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Abstract. We consider a wireless channel between a single pair of sta-
tions (sender and receiver) that is being “watched” and disrupted by a
malicious, adversarial jammer. The sender’s objective is to transmit as
much useful data as possible, over the channel, despite the jams that are
caused by the adversary. The data is transmitted as the payload of pack-
ets, and becomes useless if the packet is jammed. In this work, we develop
deterministic scheduling algorithms that decide the lengths of the packets
to be sent, in order to maximize the total payload successfully transmitted
over period T in the presence of up to f packet jams, useful payload.

We first consider the case where all packets must be of the same length
and compute the optimal packet length that leads to the best possible use-
ful payload. Then, we consider adaptive algorithms; ones that change the
packet length based on the feedback on jammed packets received. We pro-
pose an optimal scheduling algorithm that is essentially a recursive algo-
rithm that calculates the length of the next packet to transmit based on
the packet errors that have occurred up to that point. We make a thor-
ough non trivial analysis for the algorithm and discuss how our solutions
could be used to solve a more general problem than the one we consider.

Keywords: Packet scheduling · Wireless channel · Unreliable commu-
nication · Adversarial jamming

1 Introduction

Motivation and Prior Work. Transmitting data over wireless media is becoming
increasingly popular, especially with the dramatic increase of the use of mobile
devices (e.g., smart phones). A major challenge that needs to be addressed
is to cope with disruptions of the communication over such media, especially
when these disruptions are caused intentionally, e.g., by jamming devices. Sev-
eral research efforts have been made in addressing this challenge under different
assumptions and constraints (e.g., [1–6,9–12]).
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In a recent work [2], we have initiated the investigation of the following prob-
lem: We consider a wireless channel between a single pair of stations (sender and
receiver) that is being “watched” and disrupted by a malicious, adversarial jam-
mer. The sender’s objective is to transmit as much useful data as possible, over
the channel, despite the jams that are caused by the adversary. The data is trans-
mitted as the payload of packets, and becomes useless if the packet is jammed.
The adversary has complete knowledge of the packet scheduling algorithm and
it decides on how to jam the channel dynamically. However, the jamming power
of the adversary is constrained by two parameters, ρ and σ, whose values depend
on technological aspects. The parameter σ represents the maximum number of
“error tokens” available for the adversary to use at any point in time, and ρ rep-
resents the rate at which new error tokens become available (one at a time). Each
error token models the ability of the adversary to jam one packet. This adversar-
ial model could represent a jamming entity with limited resource of rechargeable
energy, e.g., malicious mobile devices or battery-operated military drones. In
these cases, σ represents the capacity of the battery (in packets that can be
jammed) and ρ the rate at which the battery can be recharged (for instance,
with solar cells). To evaluate scheduling algorithms, two efficiency measures are
used: the transmission time, to completely send a fixed pre-defined amount of
data, and the goodput ratio (successful transmission rate) achieved to do so,
which intuitively are reversely proportional.

Under this model, we first showed in [2] upper and lower bounds on the
transmission time and goodput when the sender sends packets of the same length
throughout the execution (uniform case); in this case the scheduling policy does
not take into account the history of jams. Then, considering the case σ = 1,
we proposed an adaptive scheduling algorithm that changes the packet length
based on the feedback on jammed packets received, and showed that it can
achieve better goodput and transmission time with respect to the uniform case,
for most values of ρ. However, the analysis technique used for the case σ = 1
turned out not to be easily generalized for cases where σ > 1.

In order to better understand the above problem and lay the groundwork
for obtaining its optimal solutions, in this work we consider a simpler, more
“static” version of the problem. In particular, we focus on a specific time interval
of length T , and instead of assuming that new error tokens are continuously
arriving we assume a fixed number of error tokens f . As before, the sender’s
objective is to correctly transmit the maximum amount of data, in the form of
packets, under the jamming of the adversary. Now, the adversary is constrained
only by parameter f , which is the maximum number of errors (packet jams) it
can introduce in the corresponding interval T and are available from the very
beginning of the interval. Therefore, given T and f as input, we would like to
maximize the total useful payload transmitted within the interval of interest.1

(Our modeling assumptions are detailed in Sect. 2.)

1 As we assume that the transmission time of each packet is equal to its length, it
follows that T is an absolute upper bound on the useful payload transmitted..
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We plan to use the results obtained for this problem to derive solutions of the
continuous version of [2], but we believe that this static problem is a fundamental
and challenging problem and hence of interest by itself.
Contributions. We provide a comprehensive solution to the abovementioned
problem (static version). Specifically:

– We first consider the case where the scheduling algorithm is restricted in send-
ing packets of the same length (uniform case); this could be due to limitations
in the communication protocol or the sender’s specification (Sect. 3). Given a
period of length T and up to f packet jams, we show that the optimal packet
length is p∗ ≈ √

T/f that leads to optimal useful payload T + f − 2
√

T/f . In
the case the adversary does not cause any packet error in the interval of time
T , we show that the useful payload achieved by uniform packets of length p∗

is T − √
T/f .

– Then, we devise adaptive scheduling algorithms, that is, algorithms that
change the packet length based on the feedback on jammed packets received.
We start by first considering the case of f = 1 (Sect. 4). We devise algorithm
ADP(T, 1) and prove its optimality. We show that the algorithm achieves
optimal useful payload of i−1

i T − i+1
2 + 1

i , where i is the integer such that

T ∈
[
(i−1)i

2 + 1, i(i+1)
2 + 1

)
.

Algorithm ADP(T, 1) chooses the length p of the first packet to be transmitted
as a function of T . If the packet is jammed then it transmits a second packet
of length T −p which is now guaranteed not to be jammed. If the first packet
goes through, then the algorithm is invoked recursively as ADP(T − p, 1).

– Next, we generalize algorithm ADP(T, 1) into algorithm ADP(T, f ) and show
that it obtains optimal useful payload for any f (Sect. 5). Algorithm ADP(T, f )
is essentially a recursive algorithm that also begins by choosing length p of
the first packet to be transmitted as a function of T ( a different function
from that of ADP(T, 1)). If the packet is jammed, the adversary (unlike in
the case of f = 1) still has error tokens that it can use. Therefore, instead
of sending a packet that spans the rest of the interval, ADP(T, f ) makes the
recursive call ADP(T − p, f − 1). If the packet is not jammed, then it makes
a recursive call to ADP(T − p, f ).

Although the above algorithmic approach is natural, the choice of the length
p of the packet to be sent as well as the algorithm’s analysis of optimality,
are nontrivial.

– Finally, we discuss and compare the version of the problem considered in this
work (static) with the one of [2] (continuous) and draw interesting conclusions
(Sect. 6).

Related Work. Several studies have investigated the effect of jamming in wire-
less channels. For example, Thuente et al. [12] studied the effects of different
jamming techniques in wireless networks and the trade-off with their energy
efficiency. Their study includes from trivial/continuous to periodic and intelli-
gent jamming (taking into consideration the size of packets being transmitted).
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Pelechrinis et al. [6] present a detailed survey of the Denial of Service attacks in
wireless networks. They present the various techniques used to achieve malicious
behaviors and describe methodologies for their detection as well as for the net-
work’s protection from the jamming attacks. Dolev et al. [4] present a survey of
several existing results in adversarial interference environments in the unlicensed
bands of the radio spectrum, discussing their vulnerability.

Awerbuch et al. [3] designed a medium access (MAC) protocol for single-
hop wireless networks that is robust against adaptive adversarial jamming (the
adversary knows the protocol and its history and decides to jam the channel at
any time) and requires only limited knowledge about the adversary (an estimate
of the number of nodes, n, and an approximation of a time threshold T ). One
of the differences with our work is that the adversary they consider is allowed
to jam (1 − ε)-fraction of the time steps. On a later work [10], Richa et al.
explored the design of a robust MAC protocol that takes into consideration the
signal to interference plus noise ratio (SINR) at the receiver end. In [11] they
extended their work to the case of multiple co-existing networks; they proposed
a randomized MAC protocol which guarantees fairness between the different
networks and efficient use of the bandwidth. In [9], Richa et al. considered an
adaptive adversarial jammer that is also reactive: it is allowed to make a jamming
decision based on the actions of the nodes at the current step; this is similar to the
adversary we consider in this work. However, they consider a different constrain
on jamming, following the previously mentioned works: given a time period of
length T , the adversary can jam at most (1−ε)T of the time steps in that period.
In our case, the adversary, within a time period T, can cause f channel jams,
where f does not correspond to a fraction of time, but on the number of packets
it can corrupt. Other differences is that they consider n nodes transmitting over
the channel (hence, they deal with transmission collisions) and their objective is
to optimize throughput over the non-jammed time periods.

Finally, Gilbert et al. [5] investigated the impact on the communication delay
between two honest nodes that a third malicious, energy-constraint node can
have. In particular, the three nodes share a time-slotted single-hop wireless radio
channel and the two honest nodes begin with a value to communicate. The
malicious node wishes to prevent them from communicating for as long as it
can, by broadcasting messages. However, it is allowed to broadcast up to β
messages. This is similar to the restriction we impose in our work, by allowing
the adversary to cause up to f packet errors. The setting and objectives of the
work [5], though, are different. First they show a tight bound on the number of
rounds that the malicious node can delay the communication between the two
honest entities: 2β + Θ(log |V |) rounds, where V is the set of possible values the
two honest nodes may communicate. Then, they study the implication of this
bound on more general n-node problems, such as reliable broadcast and leader
election.
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2 Model

We now present in detail the model considered in this paper.

Network Setting. We consider an unreliable wireless channel that connects two
end stations: a sender and a receiver. The sender has data to be transmitted
to the receiver over a fixed time interval T , which is sent as the payload of the
packets scheduled.2 However, the channel is prone to instantaneous jams, that
cause any packet in transit to be corrupted/destroyed. Hence, the sender needs
to decide the length of the packets to be sent in the time interval, taking or not
into consideration the history of transmissions and jams that already occurred.
This is done by using an online scheduling algorithm [7,8]. The objective of the
sender is to provide the receiver with as much data as possible over the period
of time T , despite the channel jams.

As in [2], each packet sent across the channel consists of a header of a fixed
predefined size h and a payload of length l chosen by the algorithm; the total
length of the packet is p = h + l. For simplicity we assume that h = 1, i.e.,
p = l + 1 (we assume l to be a real number). Recall that the payload corre-
sponds to the useful data sent across the channel. In addition, we assume that
the transmission time of each packet is equal to its length; the channel has a
constant transmission rate. (Therefore, T is an absolute upper bound on the
useful payload transmitted.)

Packet Jamming. We assume that the jams occurring in the channel are orches-
trated by an omniscient and adaptive adversary. That is, the adversary has com-
plete knowledge of the packet scheduling and transmission algorithm it decides
to cause the jams during the course of the computation. However, it has a con-
strained number of jams it can cause in a given period. Specifically, we consider
adversary (T, f )-A, that for a time interval of length T , T ≥ 1, it can cause
up to f packet jams. As in [2], for a worst case analysis, we assume that the
adversary jams some bit in the header of the packets in order to ensure their
destruction. So given T , the adversary defines the error pattern E as a set of
up to f jamming events on the channel over that period, each given by a time
instant in the period. We will sometimes use the special error pattern E = ∅
that corresponds to the case in which the adversary causes no jamming. For a
given T , we assume that f is known to the scheduling algorithm.

Efficiency Measures. As in [2], we consider two efficiency measures, useful pay-
load and goodput rate. The useful payload, is the sum of payloads of the success-
fully transmitted packets within a time interval of length T , under any f -size
error pattern E. The goodput rate, is the corresponding ratio of the useful pay-
load sent during the interval and is of interest mostly for the continuous version
of the model presented in [2].

More formally, we denote by UPA(T, f , E) the useful payload (payload cor-
rectly received) when using scheduling algorithm A in an interval of length T

2 We assume that the sender has data with total payload greater than T .
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against an adversary of power f that uses error pattern E. For a fixed algorithm
A, its useful payload is then simply UPA(T, f ) = minE∈E(f ) UPA(T, f , E), where
E(f ) is the set of all possible error patterns with at most f jams. From this, we
define the optimal useful payload as UP∗(T, f ) = maxA UPA(T, f ).

The goodput metric is defined similarly, by simply dividing the useful payload
by the length of the interval. More precisely, when using scheduling algorithm
A in an interval of length T against an adversary of power f that uses error
pattern E, the goodput rate is GA(T, f , E) = UPA(T, f , E)/T , the goodput of
algorithm A is GA(T, f ) = UPA(T, f )/T , and the optimal goodput is G∗(T, f ) =
UP∗(T, f )/T .

Feedback Mechanism. Following [1,2], we consider instantaneous feedback. In
particular, at the time a packet is successfully received by the receiver, a notifi-
cation/acknowledgement message is immediately received by the sender. If such a
message is not received by the sender, then it considers the packet to be jammed.
We assume that the notification packets cannot be jammed by the errors in the
channel because of their relatively small size.
Remark: Observe that if T ≤ f , then the adversary can jam all packets sent
in the interval and no useful data will be received. Therefore, from this point
onward we focus only in time periods that are initially of length T > f .

3 Uniform Packets

We first consider the case in which all the packets scheduled are of the same length.
Having to use uniform packets may be a requirement due to limitations in the com-
munication protocol, or the sender’s specifications. In this case, the following result
gives the uniform packet length that has to be used in order to maximize the min-
imum useful payload. (Note that the approximations below are due to floors and
ceilings; these approximations get closer to equality as T f grows.)

Theorem 1. Let U(p) denote the algorithm that only uses uniform packets of
length p. In an interval of length T and maximum number of errors f , the optimal
packet length for these algorithms is p∗ ≈ √

T/f that achieves useful payload
UPU(p∗)(T, f ) ≈ T + f − 2

√
T f . When the adversary causes no jamming, the

useful payload achieved by U(p∗) is UP∗
U(p∗)(T, f , ∅) ≈ T − √

T f .

Proof. Let us denote by n the number of uniform packets of length p = T
n sent in

an interval of length T when the adversary has f error tokens available. Hence,
we will be using U(n) and U(p) to denote the same algorithm. In the worst case,
the adversary will use its error tokens to jam f packets in the interval, and hence
there will be at least n − f successfully received packets by the receiver by the
end of the interval. The useful payload of the uniform algorithm using n (and
hence p) will thus be UPU(n)(T, f ) = (n − f ) (T

n − 1) (recall that each packet
consists of the payload and a unit-size header).
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Deriving this expression with respect to n, we get

∂UPU(n)(T, f )
∂n

=
fT

n2
− 1,

which implies that UPU(n)(T, f ) is maximized for n =
√

T f . Moreover, the deriv-
ative is positive for n <

√
T f and negative for n >

√
T f , which implies that the

useful payload is strictly increasing on the left of n =
√

T f and strictly decreas-
ing on the right. From this, we get that (1) there is no other n that maximizes the
useful payload, and (2) since the number of packets has to be an integer value,
the only two candidates for the optimal number of packets n∗ are �√T f 	 and

√T f �. Hence the value of these two that maximizes the useful payload is the
optimal number n∗. From this, and the fact that p = T

n , we get that p∗ ≈ √
T/f ,

as claimed.
Then, the optimal number of packets n∗ gives optimal useful payload

UPU(n∗)(T, f ) = (n∗ − f )( T
n∗ − 1) ≈ T + f − 2

√
T f , as claimed. Finally, when n∗

packets are used, and no packet is jammed by the adversary, the useful payload
is maximized reaching UPU(n∗)(T, f , ∅) = n∗( T

n∗ − 1) ≈ T − √
T f , as desired. �


Corollary 1. The optimal achievable goodput rate is GU(p∗)(T, f ) ≈
(
1 − √

f /T
)2

.

4 Optimal Algorithm for f = 1

In this section, we turn our focus on the case of a single error token available to
the adversary for an interval of length T . We give an adaptive algorithm, named
ADP(T, 1), and prove its optimality. By doing so, we hope to give an intuition
to the reader for how the general optimal algorithm, for any number of error
tokens, works.

Algorithm 1. ADP(T, 1)

If T ∈ [1, 2) then
Send packet with length p = T

else

Let i be the integer such that T ∈
[
(i−1)i

2
+ 1, i(i+1)

2
+ 1
)

Let α = i − 2, and β = (i−1)i
2

− 1

Send packet π with length p = T+β
α+2

= T−1
i

+ i−1
2

If packet π is jammed then
Send packet with length p′ = T − p

else
Call ADP(T − p, 1)
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Algorithm ADP(T, 1) is used in a time recursive fashion, with respect to the
length of the interval of interest, T . Its scheduling policy is as follows: It chooses
the length p of the first packet to be transmitted as a function of T . If the packet
is jammed then it transmits a second packet of length T −p which is guaranteed
not to be jammed. If the first packet goes through, then the algorithm is invoked
recursively as ADP(T − p, 1).

The detailed description of the algorithm is given as Algorithm1. Let
us fix the interval length T ≥ 1, and let i be the integer such that T ∈[
(i−1)i

2 + 1, i(i+1)
2 + 1

)
, as described in the above pseudocode. Let us also define

parameters α = i − 2 and β = (i−1)i
2 − 1, packet length p = T+β

α+2 , and interval
length T ′ = T − p. We first present the following two lemmas that are used to
show the optimality of Algorithm ADP(T, 1).

Lemma 1. Interval length T ′ = T −p is such that T ′ ∈
[
(j−1)j

2 + 1, j(j+1)
2 + 1

)

for j = i − 1, where i is an integer such that i ≥ 1.

Proof. Replacing the values of α and β in the calculation of T ′ = T − p,

T ′ =
(α + 1)T − β

α + 2
=

(i − 2 + 1)T −
(

(i−1)i
2 − 1

)

i − 2 + 2
=

(i − 1)T − (i−1)i
2 + 1

i
.

Now, using the fact that T ≥ (i−1)i
2 + 1, we have

T ′ ≥
(i − 1)

(
1 + (i−1)i

2

)
− (i−1)i

2 + 1

i
= · · · =

(i − 1)(i − 2)
2

+ 1.

Similarly, using the fact that T < i(i+1)
2 + 1, we have

T ′ <
(i − 1)

(
1 + i(i+1)

2

)
− (i−1)i

2 + 1

i
= · · · =

(i − 1)i
2

+ 1.

Setting j = i−1 in both cases, we have T ′ ∈
[
(j−1)j

2 + 1, j(j+1)
2 + 1

)
as claimed.

�

Lemma 2. Let T ≥ 2 and assume that UPADP(T ′, 1) = αT ′−β

α+1 , where T ′ =
T − p. Then, Algorithm ADP(T, 1) achieves useful payload UPADP(T, 1) =
(α+1)T−(β+α+2)

α+2 .

Proof. Since T ≥ 2, that Algorithm ADP(T, 1) schedules first a packet π with
length p = T+β

α+2 . If π is jammed, then a packet of length equal to the rest of the
interval, i.e., T ′ = T − p, can be sent successfully, and hence the useful payload
will be UPADP(T, 1) = T − T+β

α+2 − 1 = (α+1)T−(β+α+2)
α+2 .

Otherwise, if π is not jammed, the useful payload is obtained as UPADP(T, 1)
= p−1+UPADP(T ′, 1) = p−1+ αT ′−β

α+1 = p−1+ α(T−p)−β
α+1 = (α+1)T−(β+α+2)

α+2 .
In both cases, the useful payload is as claimed, which completes the proof. �
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Theorem 2. Given an interval of length T ≥ 1, Algorithm ADP(T, 1) achieves
optimal useful payload UP∗(T, 1) = i−1

i T − i+1
2 + 1

i , where i is the integer such

that T ∈
[
(i−1)i

2 + 1, i(i+1)
2 + 1

)
.

Proof. The proof is by induction on T . The base case is when T ∈ [1, 2), which
implies that i = 1. In this case only one packet is sent by ADP(T, 1), which
spans the whole interval and can be jammed by the adversary. Observe that in
this case at most one packet can in fact be sent in the interval. This matches
the claim that ADP(T, 1) achieves optimal useful payload UP∗(T, 1) = 0 in this
case.

Let us now consider any interval length T ≥ 2, which implies i ≥ 2. Then,
from Lemma 1, interval length T ′ = T −p ∈

[
(j−1)j

2 + 1, j(j+1)
2 + 1

)
for j = i−1.

By induction hypothesis, UPADP(T ′, 1) = UP∗(T ′, 1) = j−1
j T − j+1

2 + 1
j =

αT ′−β
α+1 , and from Lemma 2 we have that UPADP(T, 1) = (α+1)T−(β+α+2)

α+2 =
i−1

i T − i+1
2 + 1

i .
To show that the useful payload achieved by ADP is optimal for this case

T ≥ 2, consider an algorithm A that follows one of the following approaches:

(a) First sends a packet π′ of length p′ > T+β
α+2 . We assume then that the adver-

sary jams π′. The length of the rest of the interval is T − p′ < T − T+β
α+2 .

Hence the useful payload will be

UPA(T, 1) < T − T + β

α + 2
− 1 =

(α + 1)T − (β + α + 2)
α + 2

= UPADP(T, 1).

(b) First sends a packet π′ of length p′ < T+β
α+2 , p′ ≥ 1. Then the adversary does

not jam π′. The rest of the interval has length T − p′ = T ′ + (p − p′) > T ′.
We consider two cases (from Lemma 1 no other case is possible):

Case (b).1: T − p′ = T ′ + (p − p′) ∈
[
(j−1)j

2 + 1, j(j+1)
2 + 1

)
for j = i − 1. Then,

by induction hypothesis, UP∗(T ′ +(p−p′), 1) = j−1
j (T ′ +(p−p′))−

j+1
2 + 1

j < j−1
j T ′ − j+1

2 + 1
j +(p−p′) = UP∗(T ′, 1)+(p−p′). Hence,

UPA(T, 1) ≤ p′ − 1 + UP∗(T ′ + (p − p′), 1) < p′ − 1 + UP∗(T ′, 1) + (p − p′)

= p − 1 + UP∗(T ′, 1) = UPADP(T, 1).

Case (b).2: T − p′ = T ′ + (p − p′) ∈
[
(i−1)i

2 + 1, i(i+1)
2 + 1

)
. In this case,

UPA(T, 1) ≤ p′ − 1 + UP∗(T − p′, 1) = p′ − 1 +
i − 1

i
(T − p′) − i + 1

2
+

1

i

<
i − 1

i
T − i + 1

2
+

1

i
= UPADP(T, 1),

where the first equality follows from induction hypothesis, and the second
inequality follows from the fact that p′ < i (derived from p′ < T+β

α+2 , the def-

inition of α and β, and the fact that T < i(i+1)
2 + 1).
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Hence, in none of the two cases, neither (a) nor (b), Algorithm A was able to
achieve a higher useful payload than ADP, which implies that the latter achieves
optimality. �


5 Optimal Algorithm for ANY f > 1

We now turn our focus on the case of any number of error tokens f > 1 available
to the adversary for an interval of length T . We present the general adaptive
algorithm ADP(T, f ) for f > 1 as Algorithm 2, and prove its optimality in the
rest of the section. The pseudocode of ADP(T, f ) for f > 1 is similar to that of
ADP(T, 1), with a couple of differences. First, in this case it is not possible to
explicitly give the length p of the first packet π sent (values of α, β, and γ) when
T ≥ f + 1 (see Theorem 3). Second, if π is jammed, the adversary still has some
error tokens that it can use. Hence, instead of sending a packet that spans the
rest of the interval, ADP(T, f ) makes the call ADP(T −p, f −1), which could be
recursive if f > 2, or a call to the algorithm ADP(T − p, 1) (see Algorithm 1), if
f = 2. It will not be surprising then that the proof of optimality of the algorithm
ADP(T, f ) will use induction on f .

Algorithm 2. ADP(T, f ), for f > 1

If T < f + 1 then
Send packet with length p = T

else

Send packet π with length p = αT+β
γ

// α, β and γ depend on
T ; see Theorem 3

If packet π is jammed then
Call ADP(T − p, f − 1)

else
Call ADP(T − p, f )

Let us first prove some observations that hold for any optimal algorithm
OPT, to be used later in the analysis of Algorithm ADP(T, f).

Observation 1. The useful payload of an optimal algorithm OPT, follows a
non-decreasing function with respect to the length of the interval of interest, T ,
when there are f ≥ 0 available errors, i.e., UP∗(T, f ) ≤ UP∗(T +δ, f ), for δ > 0.

Proof. Let us consider an optimal algorithm OPT that achieves optimal useful
payload UP∗(T, f ) = α, for an interval of length T and f error tokens available
within the interval. Now let us construct an algorithm A, that for interval length
T + δ initially uses the exact same approach as OPT for T ; choosing the same
packet lengths OPT does during the initial T time of the interval. This means
that it has at least the same useful payload as OPT for T , i.e., UPA(T +δ, f ) ≥ α.
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Since OPT is the optimal algorithm, it must achieve at least the same useful
payload as A for the interval of length T +δ, i.e., UP∗(T +δ, f ) ≥ UPA(T +δ, f ).
Hence, UP∗(T, f ) ≤ UP∗(T + δ, f ) as claimed. �

Observation 2. The useful payload of an optimal algorithm OPT, follows a
non-increasing function with respect to the number of available errors in an
interval of length T , i.e., UP∗(T, f ) ≤ UP∗(T, f − 1), where f ≥ 1.

Proof. Let us consider an optimal algorithm OPT, with a useful payload
UP∗(T, f ) = β for an interval length T with f errors available. Then, let us
construct an algorithm A, that for f − 1 error tokens during the same interval
length T , uses the exact approach as OPT for f errors; choosing the same packet
lengths until f −1 error tokens are used by the adversary. Then, it schedules one
packet equal to the size of the remaining interval. This means that it has at least
the same useful payload as OPT does for f errors, UPA(T, f −1) ≥ β. And since
OPT is the optimal algorithm, it must achieve at least the same useful payload
for the same interval and f −1 errors, i.e., UP∗(T, f −1) ≥ UPA(T, f −1). Hence,
UP∗(T, f ) ≤ UP∗(T, f − 1) as claimed. �

Lemma 3. There is an optimal algorithm OPT that is work-conserving, i.e.,
for each T and for each f , there is an optimal work-conserving strategy deciding
the packet lengths.

Proof. Assume by contradiction that there is some combination of interval and
number of error tokens (T, f ), for which no work-conserving scheduling strategy
is optimal. We choose the smallest such T and consider the following:

(1) There is an optimal strategy for this pair of T and f that does not send
any packet during the interval. Hence the optimal useful payload is zero,
UP∗(T, f ) = 0. In this case, sending one packet that spans the whole interval
will lead to the same payload.

(2) There is a strategy that waits for Δ time at the beginning of the interval
before sending a packet of length p. This packet can be jammed. Therefore,

UP∗(T, f ) = min{UP∗(T − Δ − p, f − 1), p − 1 + UP∗(T − Δ − p, f )}
≤ min{UP∗(T − p, f − 1), p − 1 + UP∗(T − p, f )}.

where the inequality follows from Observation 1. The right side of the inequal-
ity is the useful payload obtained by the strategy that does not wait the Δ
period, but instead schedules the packet of length p at the beginning of the
interval (which is work-conserving). Since both cases lead to a contradiction,
the claim follows. �


Lemma 4. The optimal useful payload is a continuous function with respect to
the length of the interval, T , when there are f ≥ 1 errors available.

Proof. Assume by contradiction that the optimal useful payload is not a con-
tinuous function. This means that there is an interval length T for which the
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following holds: lim
ε→0

UP∗(T − ε, f ) < UP∗(T, f ). Let us fix parameter ε > 0, and
observe the behavior of a work-conserving optimal algorithm OPT for interval
lengths T and T − ε (such an algorithm exists by Lemma 3). Let us then denote
by pO and pε the lengths of the first packet scheduled by OPT in each case
respectively. These packets can be jammed or not. We observe:

UP∗(T − ε, f ) = min{UP∗(T − ε − pε, f − 1), pε − 1 + UP∗(T − ε − pε, f )}(1)
UP∗(T, f ) = min{UP∗(T − pO, f − 1), pO − 1 + UP∗(T − pO, f )} (2)

However, if we construct an alternative algorithm A that chooses a packet of
length p′′ = pO − ε in the case of interval of length T − ε, and works as OPT for
smaller intervals, then

UPA(T −ε, f ) = min{UP∗(T −pO, f −1), pO −ε−1+UP∗(T −pO, f )} ≥ UP∗(T, f )−ε.

Since UP∗(T −ε, f ) ≥ UPA(T −ε, f ), it is then trivial to conclude that lim
ε→0

UP∗(T

− ε, f ) = UP∗(T, f ), which is a contradiction. Hence the optimal useful payload
is a continuous function with respect to the length of the interval, as claimed. �


We will now show how Algorithm ADP(T, f ) computes the packet length
p of the packet π sent when T ≥ f + 1. The computation assumes that it is
possible to recursively call ADP(T ′, j) for any T ′ < T and j ≤ f , and that the
useful payload of each of these recursive calls is the optimal value UP∗(T ′, j).
Then, ADP(T, f ) chooses as length of packet π the smallest value p ∈ [1, T ] that
satisfies the equality UP∗(T − p, f − 1) = p − 1 + UP∗(T − p, f ). Table 1 shows
the values of p chosen for some interval lengths T when f = 2. It also shows the
useful payload achieved by the algorithm using these values of p.

Table 1. Values of packet length p and optimal useful payload UP∗(T, 2) achieved
with Algorithm ADP(T, 2).

T [1, 3) [3, 9/2) [9/2, 17/3) [17/3, 19/3) [19/3, 70/9) [70/9, 308/36)

p T T
3

T+6
7

3T+3
12

5T+16
26

6T+42
42

UP∗(T, 2) 0 T−3
3

3T−10
7

6T−22
12

14T−54
26

24T−98
42

We now prove that the described process to make the choice leads to opti-
mality.

Theorem 3. Given an interval of length T ≥ f + 1, Algorithm ADP(T, f )
achieves optimal useful payload by choosing the smallest value p ∈ [1, T ] that
satisfies the equality

UP∗(T − p, f − 1) = p − 1 + UP∗(T − p, f ).
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Moreover, there are constants αl, βl, γl, αk, βk, and γk such that UP∗(T −p, f ) =
αl(T−p)−βl

γl
and UP∗(T − p, f − 1) = αk(T−p)−βk

γk
, and hence

p =
(αkγl − γkαl)T + γkγl + γkβl − βkγl

γkγl + αkγl − γkαl
.

(Observe that the parameters used in Algorithm2 are hence α = αkγl − γkαl,
β = γkγl +γkβl −βkγl, and γ = γkγl +αkγl −γkαl.) The optimal useful payload
obtained is then

UP∗(T, f ) =
αkγlT − (αkγl + αkβl + βkγl − βkαl)

γkγl + αkγl − γkαl
.

Proof. We prove by a double induction on the number of error tokens f and the
length of the interval T , that the approach followed by Algorithm ADP(T, f )
gives the optimal useful payload.
Base Cases. We have as base case of the induction on the number of error tokens
the fact that (1) when f = 0 the optimal strategy is to send a single packet of
length T that spans the whole interval, leading to UP∗(T, 0) = T − 1, and (2)
that the algorithm ADP(T, 1) presented in Sect. 4 is optimal for any T , which
covers the case f = 1.

For a given f > 1, we also use induction in the length of the interval T . In this
case the base case is when T < f +1, which has optimal payload UP∗(T, f ) = 0,
since the adversary can jam each of the up to f packets that can be sent.
Induction Hypotheses. We first inductively assume that ADP(T, j) is optimal for
any number of tokens j < f available to the adversary at the beginning of the
interval and any interval length T > j. In particular, for any j < f and any T > j,
there is a known range of lengths Rij = [aij , bij) such that T ∈ Rij , bij = a(i+1)j

and the optimal useful payload is known to be UP∗(T, j) = αijT−βij

γij
. Parameters

αij , βij and γij are known positive integers, such that βij > γij > αij .
We inductively also assume that for f error tokens, there are m known ranges

of lengths Rif = [cif , dif ) for i = 1, 2, . . . ,m, such that
⋃m

i=1 Rif = [1, dmf ),
c1f = 1, and dif = c(i+1)f ,∀1 ≤ i < m. Also, for any interval length T such that
T < dmf and T ∈ Rif = [cif , dif ), the optimal useful payload is known to be
UP∗(T, f ) = αif T−βif

γif
. Parameters αif , βif and γif are known positive integers

such that (1) βif > γif > αif , and for any R�f , Rrf where 1 ≤ � ≤ r ≤ m, it
holds that (2) βrf

γrf
≥ β�f

γ�f
and (3) αrf

γrf
≥ α�f

γ�f
.

Inductive Step. For interval length T ∈ [dmf , dmf + 1), the algorithm ADP(T, f )
chooses the smallest packet length p ∈ [1, T ] that satisfies the following condition

UP∗(T − p, f − 1) = p − 1 + UP∗(T − p, f ). (3)

Claim. There is at least one packet length p ∈ [1, T ] that satisfies Eq. 3.

Proof of Claim. Observe that, when p = 1, from Observation 2 we have that
UP∗(T − p, f − 1) ≥ p − 1 + UP∗(T − p, f ). On the other hand, when p = T , we
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have that UP∗(T − p, f − 1) = 0 ≤ p − 1 + UP∗(T − p, f ) = T − 1. Hence, taking
into consideration the continuity of the useful payload function of both f −1 and
f error tokens (Lemma 4) and the Mean Value Theorem, there always exists a
packet size p ∈ [1, T ] such that UP∗(T −p, f −1) = p−1+UP∗(T −p, f ). �
Claim

Now, let p be the packet length chosen, and let T − p ∈ Rkj = [akj , bkj) and
T − p ∈ Rlf = [clf , dlf ). Note that Rkj and Rlf are among the known ranges
from the induction hypothesis. Then, by induction hypothesis UP∗(T − p, f ) =
αlf (T−p)−βlf

γlf
and UP∗(T − p, f − 1) = αkj(T−p)−βkj

γkj
. Then, solving Eq. 3 for p,

the packet length is

p =
(αkjγlf − γkjαlf )T + γkjγlf + γkjβlf − βkjγlf

γkjγlf + αkjγlf − γkjαlf
,

and the useful payload obtained is

UPADP(T, f ) = UP∗(T − p, f − 1) = p − 1 + UP∗(T − p, f ) =
αkj(T − p) − βkj

γkj

=
αkjγlf T − (αkjγlf + αkjβlf + βkjγlf − βkjαlf )

γkjγlf + αkjγlf − γkjαlf
,

as claimed. To complete the induction step, we define α = αkjγlf , β = αkjγlf +
αkjβlf + βkjγlf − βkjαlf and γ = γkjγlf + αkjγlf − γkjαlf . Then, we show the
following three properties (1) β > γ > α, (2) β

γ ≥ βlf

γlf
, and (3) α

γ ≥ αlf

γlf
as follows.

Property 1. For the new parameters α = αkjγlf , β = αkjγlf + αkjβlf + βkjγlf −
βkjαlf and γ = γkjγlf + αkjγlf − γkjαlf , it holds that β > γ > α.

Proof of Property 1. First, from the induction hypotheses, recall the definition of
parameters αij , βij and γij , being known positive integers such that βij > γij >
αij . Looking now at the current parameters α, β and γ individually, we have the
following:

(a) α = αkjγlf .
(b) β = αkjγlf + αkjβlf + βkjγlf − βkjαlf = αkj(γlf + βlf ) + βkj(γlf − αlf ).
(c) γ = γkjγlf + αkjγlf − γkjαlf = γkj(γlf − αlf ) + αkjγlf .

Observe that γkj(γlf −αlf )+αkjγlf > αkjγlf , since γkj > 0 and γlf −αlf > 0
by induction hypothesis. Hence, from (a) and (c) γ > α. Also, αkj(γlf + βlf ) +
βkj(γlf −αlf ) > γkj(γlf −αlf )+αkjγlf , since by induction hypothesis βkj > γkj ,
γlf − αlf > 0, and all parameters are positive. Hence, from (b) and (c) β > γ
holds as well. This completes the proof of the claim. �
Property1

Property 2. For the new parameters β = αkjγlf + αkjβlf + βkjγlf − βkjαlf and
γ = γkjγlf + αkjγlf − γkjαlf , it holds that β

γ >
βlf

γlf
.

Proof of Property 2. For this proof observe first, that since β > γ (as shown in
Property 1), we can safely use the fact that β

γ > β−c
γ−c , where c is positive. Also by

induction hypothesis we have that γlf −αlf > 0 and βkj −γkj > 0. We therefore
use some fraction inequality properties as follows:
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β

γ
=

αkjγlf + αkjβlf + βkjγlf − βkjαlf

γkjγlf + αkjγlf − γkjαlf
=

αkj(γlf + βlf ) + βkj(γlf − αlf )

γkj(γlf − αlf ) + αkjγlf

>
αkj(γlf + βlf ) + (βkj − γkj)(γlf − αlf )

αkjγlf
>

αkjγlf + αkjβlf

αkjγlf
= 1 +

βlf

γlf
>

βlf

γlf
,

which completes the proof. �
Property2

Property 3. For the new parameters α = αkjγlf and γ = γkjγlf +αkjγlf −γkjαlf ,
it holds that α

γ >
αlf

γlf
.

Proof of Property 3. For this proof observe first, that since γ > α (as shown in
Property 1), we can safely use the fact that α

γ > β+c
γ+c , where c is positive. Also by

induction hypothesis we have that γlf − αlf > 0. We therefore use some fraction
inequality properties as follows:

α

γ
=

αkjγlf

γkjγlf + αkjγlf − γkjαlf
=

αkjγlf + γkjαlf

αkjγlf + γkjγlf

=
αkjαlf + αkj(γlf − αlf ) + γkjαlf

γlf (αkj + γkj)
=

αlf (αkj + γkj)
γlf (αkj + γkj)

+
αkj(γlf − αlf )
γlf (αkj + γkj)

>
αlf

γlf
,

which completes the proof. �
Property 3

Observe that the above proof holds for all T s in the interval [dmf , dmf +1); for
each one of these, the algorithm would compute the smaller p that satisfies Eq. 3
and the computation of the parameters α, β, γ is done analogously. Therefore,
the known ranges of lengths are extended in this interval.

We must now show that the useful payload is in fact optimal. Let us assume
by contradiction that an algorithm A is able to achieve a larger useful payload
for the pair (T, f ) by sending first a different packet length p′ �= p. We consider
the following cases.

(a) Algorithm A chooses a packet π′ of length p′ > p. Then, we assume that
the adversary will jam the packet π′. Hence, the useful payload achieved
by A will be upper bounded as UPA(T, f ) ≤ UP∗(T − p′, f − 1) which by
Observation 1 is smaller than UP∗(T − p, f − 1) = UPADP(T, f ), since
T − p′ < T − p.

(b) Algorithm A chooses a packet π′ of length p′ < p. Observe that p′ does not
satisfy Eq. 3, since p is the smallest length that does. Then the adversary
does not jam π′. Then, UPA(T, f ) ≤ p′ − 1 + UP∗(T − p′, f ). We show now
that this value is no larger than p − 1 + UP∗(T − p, f ) = UPADP(T, f ).
Let us assume that T − p′ ∈ Rrf , where r ≥ l. Then, UP∗(T − p′, f ) =
αrf (T−p′)−βrf

γrf
≤ αrf

γrf
(T − p′) − βlf

γlf
, since βrf

γrf
≥ βlf

γlf
as shown by Property 2.

Similarly, UP∗(T − p, f ) = αlf (T−p)−βlf

γlf
≥ αrf

γrf
(T − p) − βlf

γlf
, since αrf

γrf
≥ αlf

γlf

as shown by Property 3. Finally, combining these bounds and the fact that
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αrf

γrf
< 1 (see Property 1), we get that

UPA(T, f ) ≤ p′ − 1 + UP∗(T − p′, f ) ≤ p′ − 1 +
αrf

γrf
(T − p′) − βlf

γlf

≤ p′ − 1 +
αrf

γrf
(T − p′) − βlf

γlf
+ (p − p′) − αrf

γrf
(p − p′)

= p − 1 +
αrf

γrf
(T − p) − βlf

γlf
≤ UPADP(T, f ).

In all cases the resulting useful payload is smaller than the one achieved by
choosing the smallest packet size p such that UP∗(T − p, f − 1) = p − 1 + UP∗

(T − p, f ). Hence the packet size calculated by ADP(T, f ) is optimal. �


6 Discussion

Recall that the problem we considered up to this point in the paper is a “static”
version of the problem we considered in [2] (continuous version). In this section
we discuss the use of our proposed algorithms when applied to the continuous
version of the problem. (Recall from Sect. 1 the definitions of ρ and σ.)

We begin with the following observation: If we divide the time interval of
the continuous version of the problem into successive intervals of length 1/ρ,
and σ error tokens are available at the beginning of each interval, then each of
these intervals can be considered an instance of the static version of the problem,
where T = 1/ρ and f = σ.

Fig. 1. The goodput rate of algorithms ADP-1 [2] and ADP(T, 1) (Sect. 4) for T =
1 . . . 22

Therefore, by running algorithm ADP(1/ρ, σ) in each of these intervals we
obtain a solution to the continuous version of the problem. However, this solution
is possibly not the best possible, as we make the pessimistic assumption that
at the beginning of each interval, the adversary has all σ error tokens available
to use; this is true for the first interval, but in successive intervals this might
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not be the case (with the exception of the case σ = 1, which we discuss below).
Based on the model defined in [2], a new error token will be arriving at the
beginning of each interval. If there are already σ tokens, then a token is lost
(σ represents, for example, the capacity of the battery of a jamming device –
this cannot be exceeded). If in this interval, the adversary performs, say, three
packet jams, then at the beginning of the next interval it will have σ−2 available
tokens. If the scheduling algorithm keeps track of this, then in this interval it
should use ADP(1/ρ, σ − 2) instead of ADP(1/ρ, σ). So, in order to produce
more efficient solutions, the scheduling algorithm needs to keep track (using the
feedback mechanism) how many jams took place in the previous interval, and
using its knowledge of 1/ρ, run the appropriate version of ADP(). Although there
are other subtle issues that also need to be considered, the proposed approach
can be used as the basis for obtaining an optimal solution to the continuous
version of the problem. We plan to pursue this direction in future research.

Regarding the case of f = σ = 1, as demonstrated in Fig. 1, algorithm
ADP(1/ρ, 1) obtains better results than the solution developed in [2] (called
Algorithm ADP-1). In [2], for σ = 1 it was shown that the goodput rate of
Algorithm ADP-1 is 1− ρ

2

(
1 +

√
1 + 8

ρ

)
. Figure 1 depicts this goodput rate and

the goodput rate of algorithm ADP(1/ρ, 1) as obtained from our analysis in
Sect. 4, for T = 1 . . . 22. Since in the case of σ = 1 it is best for the adversary to
use the error token (otherwise it will lose it), our improved goodput demonstrates
the promise of the abovementioned approach.
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