
978-3-901882-70-8 c©2015 IFIP

Empirical Comparison of Power-efficient Virtual
Machine Assignment Algorithms

Jordi Arjona Aroca
Universidad Carlos III de Madrid, Madrid, Spain

Email: jorge.arjona@imdea.org

Antonio Fernández Anta
Institute IMDEA Networks, Madrid, Spain

Email: antonio.fernandez@imdea.org

Abstract—The advent of cloud computing has changed the way
many companies do computation, allowing them to outsource it
to the cloud. This has given origin to a new kind of business,
the cloud providers, which run large datacenters. In order to
be competitive, cloud providers must keep the energy consumed
by the datacenter low. One way to achieve this is with smart
task assignment algorithms, which decide where tasks are to be
placed upon their arrival.

In this paper we compare the performance of multiple task
assignment algorithms for saving energy. We assume tasks are
in fact virtual machines that have to be assigned to physical
machines, and we assume that the physical machines have
a power consumption that increases superlinearly with the
load. Then, we propose an assignment algorithm VMA2 and
compare its performance with other state-of-the-art assignment
algorithms, both theoretical or already deployed in real cloud
computing platforms. VMA2 leads to low energy consumption.
It outperforms the other algorithms in most situations, proving
itself to be an effective assignment algorithm for cloud computing
platforms.

Index Terms—Cloud computing, Datacenters, Virtual Machine
Assignment, Energy Efficiency, Scheduling, Load Balancing.

I. INTRODUCTION

Cloud computing has brought a huge number of new solu-
tions for problems which were even unknown in the business
world. One of these solutions is the possibility of outsourcing
large amounts of computation to servers in the cloud and not
needing to acquire computers that would be underused and
soon outdated. Of course this not only saves money to the
companies but also energy, as these servers were usually kept
running 24/7 even when they were not being used. However,
these costs have been moved to companies, such as Amazon
Web Services [1], Rackspace [3], or Citrix [2], specialized in
providing computing power. Although these companies make
large profits, their principal way of enlarging margins is to
increase the efficiency of their servers as much as possible.
Virtualization plays, hence, a key role here, minimizing the
computational resources that have to be used. However, vir-
tualization is like a play with multiple actors, and one of the
leading actors in this play are the assignment algorithms.

Assignment (or allocation) algorithms are in charge of
deciding to which Physical Machine (PM) is a Virtual Machine

This work has been supported in part by the Regional Government of
Madrid (CM) grant Cloud4BigData (S2013/ICE-2894, cofunded by FSE &
FEDER), and the Spanish MINECO/MICINN grant TEC2011-29688-C02-01.

(VM)1 assigned upon its arrival. Traditionally, it has been
considered that these algorithms were to minimize the number
of PMs required to host the number of tasks present in the
system. The belief was that using less PMs increases the
overall efficiency and reduces the costs in power consumption.
This reasoning was due to the fact that, in the past, PMs used
to be single core and were not able to change their frequency
of operation, what led to a linear dependency between the
power consumption and the load.

However, after the arrival of multicore machines the rules
have changed. As shown in [4], nowadays, the power con-
sumption of data center servers has a superlinear dependency
on their load. This non-linear dependency implies the exis-
tency of optimal loads and paying higher costs, in terms of
power consumption, when PMs are loaded beyond that optimal
load. Hence, having superlinear models has a direct effect on
the way VMs are assigned as, now, minimizing the number
of PMs used might not be the optimal solution anymore. A
theoretical study of this problem, a.k.a. the Virtual Machine
Assignment Problem (VMA), assuming a superlinear power
model is presented in [5], where a competitive analysis of
multiple offline and online cases of this problem is provided.

This document intends to extend the work of [5] by
providing an empirical comparison via simulations of our
own devised online algorithms against multiple state-of-the-
art assignment algorithms currently used in popular cloud
computing platforms such as OpenNebula [12], Koala [6],
or Eucalyptus [8]. In addition we propose a new assignment
algorithm, VMA2, that leads to low energy consumption.
Hence, the main contributions of this paper are two. First, we
present VMA2, a novel power aware assignment algorithm.
Second, we make a detailed study of two version of the
VMA problem, and compare the performance of VMA2, VMA1
(which we proposed in [5]), and multiple state-of-the-art
algorithms in different meaningful scenarios. VMA2 proves
itself as a valid assignment algorithm, since it outperforms
the other algorithms in most of the cases.

Roadmap. The paper is organized as follows. In Section
II we overview related work. Section III describes the VMA
problem and the cases that we will analyze, while Section IV
introduces our proposed algorithms. Simulations are described

1We use task or VM indistinctly, assuming that each task that arrives to
the system is run in a different VM.

and presented in Section V. We finally present our conclusions
in Section VI.

II. RELATED WORK

The empirical and theoretical work related to VMA is vast
and its detailed overview is out of the scope of this paper. We
focus on empirical references and refer the reader to [5], and
the references therein, to find some theoretical context.

Srikantaiah et al. [13] show that VMA cannot be reduced
to a bin packing problem if our goal is an energy efficient
assignment. That is, assuming linear energy models and trying
to minimize the number of PMs used. Therefore, energy
models such as the proposed in [5], where the optimal load
of a PM is a function only of the fixed cost of being active
(b) and the exponential rate of power increase on the load
(α) (that is, the optimal load is not related to the maximum
capacity of a PM) seem to be more appropriate. Based on
this energy model, we compare, in this work, some of the
allocation policies presented in [5], [10] and [11].

Jansen and Brenner [10] evaluate the allocation of VMs
to clusters following 9 placement policies, some of them
included in popular cloud platforms like OpenNebula [12] or
Eucalyptus [8], considering a linear energy cost model. The
policies they consider are, namely, Round Robin, Striping,
Packing, Load Balancing (free CPU count), Load Balancing
(free CPU ratio), Watts per Core, and Cost per Core. We will
adapt 5 of these policies to our model and cost function for
the purpose of simulations.

Mills et al. [11] provide an objective method to compare
different placement algorithms. They perform their analysis
using 3 different cluster choice criteria and 6 different alloca-
tion heuristics from the bin packing literature, that are used
in cloud platforms such as Koala [6] or Eucalyptus [8]. These
policies are, namely, First Fit, Least-Full First, Most Loaded
First, Next Fit, Random Assignment, and Tag & Pack. We use
all these policies, except Tag & Pack, in our simulations.

Finally, Arjona et al. [5] perform a thorough offline and
online analysis of multiple cases of the VMA problem.
In particular, they consider four different cases defined by
whether the number of PMs or their capacity are bounded or
unbounded. The main novelty on their study is the already
mentioned superlinear energy consumption model and an
online allocation algorithm, that we denote as VMA1.

This work extends [5] by providing an empirical analysis
comparing the different aforementioned state-of-the-art assign-
ment algorithms against VMA1 and a new algorithm that we
propose in this work (and that will be denoted as VMA2).
Similarly, the main difference between most of the algorithms
in [10] and [11] and VMA1 and VMA2 is that the latter provide
power aware assignments while the former do not.

III. THE VMA PROBLEM

The VMA problem is described in [5] as follows. Given a
set S = {s1, . . . , sm} of m > 1 identical physical machines
(PMs) of capacity C; rational numbers µ, α and b, where
µ > 0, α > 1 and b > 0; a set D = {d1, . . . , dn} of n virtual

machines and a function ` : D → R that gives the CPU load
each virtual machine incurs, the aim is to obtain a partition
π = {A1, . . . , Am} of D, such that (Ai) ≤ C, for all i. Then,
the objective is minimizing the power consumption given by
the function

P (π) =
∑

i∈[1,m]:Ai 6=∅

(
µ
(∑
dj∈Ai

(dj)
)α

+ b

)
. (1)

Based on these definition, the authors describe 4 different
cases, (·, ·)-VMA, (C, ·)-VMA, (·,m)-VMA, and (C,m)-
VMA. The difference between these 4 cases lies on whether
the capacity and the number of PMs are bounded or not.
The results presented in this work are related to the (·,m)-
VMA case, where the number of PMs is bounded but not their
capacity; and the (C,m)-VMA case, where both the capacity
and the number of PMs are bounded.

We also inherit the definition of optimal load, denoted as
x∗, as the load at which the power rate, defined as the power
consumed per unit of load, is minimized. The optimal load of
a PM is given by x∗ = (b/(α−1))1/α. We refer the reader to
[5] for further details on the description of the problem and
the optimal load.

IV. PROPOSED ALGORITHMS

As mentioned in Section II, we want to compare two power
aware algorithms, VMA1 and VMA2, with several state-of-the-
art allocation algorithms. In this section we introduce both
algorithms and provide their pseudocode, which can be found
in Algorithms 1 and 2.

As can be seen, both algorithms have a certain bin-packing
like flavour but including a power awareness aspect, since
they do not fill PM up to its maximum capacity but up to its
optimal load x∗. Similarly, both algorithms are similar, being

Algorithm 1: Online algorithm VMA1 for (·, ·)-VMA and
(C, ·)-VMA problems.

for each VM di do
if (di) > min{x∗,C}

2 then
di is assigned to a new PM

else
di is assigned to any loaded PM sj where
`(Aj) ≤ min{x∗,C}

2 . If such loaded PM does not
exist, di is assigned to a new PM.

Algorithm 2: Online algorithm VMA2 for the (·, ·)-VMA
problem.

for each VM di do
if (di) ≥ x∗ then

di is assigned to a new PM
else

di is assigned to the PM sj such that
(Ak) ≤ (Aj) < x∗ for all k. If such loaded PM
does not exist, di is assigned to a new PM.

their main difference the threshold imposed on the amount of
load per PM, min{x∗,C}

2 for VMA1 and x∗ for VMA2. VMA1,
which was already introduced in [5], is able to achieve better
competitive and approximation ratios than VMA2. However,
theoretical results do not necessarily mean better results in real
deployments. In some scenarios VMA2 allows a more packed
solution than VMA1, i.e., providing solutions where the load
per PM is closer to x∗ than with VMA1. This packing ability
might result in a lower power consumption, conditioned by
the value of α and on whether the PMs’ capacity is bounded
or not.

Both VMA1 and VMA2 have been extended to handle a
bounded number of PMs when necessary. This is achieved by
assigning the incoming task to the least loaded machine when
no more new PMs are available. Similarly, VMA2 has also
been extended to deal with the bounded capacity case, when
required, by using a threshold of min{x∗, C} and checking
whether a new load fits into the targeted PM. In case a new
load does not fit, it is assigned to the first possible PM with
available resources.

V. EMPIRICAL EVALUATION

In this section we evaluate the performance of VMA1 and
VMA2 via simulations, and compare them to other state-of-
the-art online allocation algorithms.

A. Simulations Setup

The performance of both VMA1 and VMA2 is first compared
with a lower bound, denoted LBVMA, that is obtained as
follows. The input VMs are sorted in non-increasing order of
their loads. Then, using this order, as many VMs as possible
with load at least x∗ are assigned to different PMs. Let L be
total load of the VMs still unassigned. If there are bL/x∗c
still unused PMs they will be used. Otherwise all PMs will
be used. Finally, the load L is assigned among all used PMs
as if it could be infinitely divided (i.e., as a fluid), using a
water-filling algorithm [7].

We evaluate both (·,m)-VMA and (C,m)-VMA problems.
Therefore, in the (C,m)-VMA case a VM can only be
assigned to a PM if the latter has sufficient capacity to host it.
We test both algorithms VMA1 and VMA2 and also compare
them with the following algorithms proposed in the literature:
• Random Fit (RF) [11]: It chooses a PM for each VM

uniformly at random among the PM. If the chosen PM
cannot allocate the load of the VM, the process is
repeated, until the VM is assigned to a PM.

• Next Fit (NF) [11]: Starting initially at the first PM, each
new VM is assigned to the next PM after the latest PM
to which a VM was assigned (in a cyclic fashion) and
with sufficient capacity to host it.

• Least Full First (LFF) [11]: Each new VM is assigned to
(one of) the least loaded PM(s) in the system with enough
capacity to host it.

• Striping (S) [10]: Each new VM is assigned to (one of)
the PM(s) with the smallest number of VMs assigned and
with enough capacity to host it.

(a) Trace A (synthetic traces)

(b) Trace B (Google traces)

Fig. 1. VMs load distributions used in the evaluations.

• Watts per Core (WC) [10]: Assigns each new VM to the
PM whose power would suffer the smallest increase and
with enough capacity to host it.

• First Fit (FF) [11]: Each new VM is placed in the first
PM that can host it, starting from the first PM.

• Round Robin (RR) [10]: Like FF but, after the first VM
is assigned, the search starts from the latest PM in which
a VM was allocated.

• Packing (P) [10]: Each new VM is assigned to (one
of) the PM(s) with the largest number of VMs assigned
provided that the PM can host it.

• Most Full First (MFF) [11]: Each new VM is assigned
to the most loaded PM in which it fits.

Observe that, given its nature, First Fit, Round Robin,
Packing and Most Loaded First can be only considered for
the (C,m)-VMA problem. If PMs had infinite capacity, these
algorithms would place all VMs in only one PM. The re-
maining algorithms are evaluated for both (·,m)-VMA and
(C,m)-VMA.

The behavior of the aforementioned algorithms is evaluated
by inputting the two sets of traces, synthetic and real, shown
in Figure 1. We call them Trace A and Trace B, respectively.
Trace A is generated by randomly choosing the load of
each VM following a power-law distribution with exponential
cutoff, which has been chosen so 100% is the maximum
task load of a VM. We randomly select 10000 integer loads
using this distribution. The loads are inputed in the system
sequentially. This leads us to the VM load distribution shown
in Figure 1(a).

Trace B is obtained from public Google traces [9]. We

TABLE I
SIMULATION PARAMETERS FOR A SET OF MACHINES FOR THE

(·,m)-VMA CASE.

(·, ·)-VMA case

b x∗ [GCPS] µ
α = 1.5 α = 2 α = 2.5 α = 3

73.05 10 1.46E-13 7.31E-19 4.87E-24 3.65E-29
92.15 30 3.55E-14 1.02E-19 3.94E-25 1.71E-30

111.25 50 1.99E-14 4.45E-20 1.33E-25 4.45E-31
135.125 75 1.32E-14 2.40E-20 5.85E-26 1.60E-31

159 100 1.01E-14 1.59E-20 3.35E-26 7.95E-32
187.65 130 8.01E-15 1.11E-20 2.05E-26 4.27E-32
206.75 150 7.12E-15 9.19E-21 1.58E-26 3.06E-32

350 300 4.26E-15 3.89E-21 4.73E-27 6.48E-33
541 500 3.06E-15 2.16E-21 2.04E-27 2.16E-33

779.75 750 2.40E-15 1.39E-21 1.07E-27 9.24E-34
1018.5 1000 2.04E-15 1.02E-21 6.79E-28 5.09E-34

extract all the tasks from these traces, assuming that each task
is an independent VM. We assume that the VMs (tasks) arrive
at the system in the same order at which hey arrived to the
Google system, sorting them by the arrival time (given in the
trace). The task load of a VM is the maximum CPU load
of the task. The trace then contains 124885 VMs with loads
varying between 0.31% and 12.5%. The resulting VM load
distribution can be seen in Figure 1(b). The load values of the
VMs for both distributions are given in percentage in order
to scale them up depending on the maximum capacity of a
PM in the (C,m)-VMA case or to an appropriate value in the
(·,m)-VMA case.

Each execution of the algorithms is run with a fixed number
of PMs. This number of PMs increases from 1 to the number
of VMs in the trace being used. This allows us to see how the
power consumption and how the algorithms behavior evolve
when the number of available PMs in the system varies.
Finally, in order to evaluate both (·,m)-VMA and (C,m)-
VMA, we emulate different PMs by determining their α, b,
µ and x∗ parameters as well as the PM maximum capacity
or the maximum task load when it corresponds. Then we run
the proposed algorithms for each one of these emulated PMs
and compare the influence of the different values for these
parameters on the final results.

B. Results for (·,m)-VMA

We first evaluate (·,m)-VMA. The first step is to define the
set of PMs that we are going to use to evaluate it. To do so, we
fix the values of α, b and x∗ and compute µ depending on the
previous parameters. In particular, we used α = {1.5, 2, 2.5, 3}
and x∗ = {10, 30, 50, 75, 100, 130, 150, 300, 500, 750, 1000}
(given in (Giga)Cycles per Second (GCPS) following the
conclusions from [4]). The values of b are determined by
interpolation of the baseline costs of Nemesis, Survivor
and Erdos, whose values for b (∼ 85 W, 67 W and 215 W)
are known from the experiments performed in [4]. These
combinations of parameters result in 44 different instances of
PMs which are shown in Table I.

Additionally, taking advantage of the fact that the task loads
from Trace A and B are given in percentage, and in order to

study the importance of the x∗ to task load ratio, we define
the maximum VM load λ as the maximum task load that a
VM arriving to the system can have. Therefore, the task load
of the VMs arriving to the system will be the product of the
task load (in percentage) and λ.

We study three different scenarios. In the first one we study
the effect of α for different values of λ and x∗ when using
VMA1, VMA2, and the lower bound LBVMA. Second and third
scenarios are devoted to compare our proposed algorithms with
the state-of-the-art algorithms, always keeping LBVMA as a
reference. In the second scenario we study the relevance of λ
while keeping α and x∗ constant. Finally, in the third one, we
study the effect of having different values of x∗ while λ and
α remain unaltered.

Scenario 1 compares the power consumed by partitions
obtained with VMA1 or VMA2 and for Trace A and Trace
B. We compare these results to the ones achieved by LBVMA,
that lower bounds the optimal power consumption. The results
obtained are presented as graphs in which the power consumed
is represented as a function of the number of PMs used.

Figure 2 shows the results for Trace A, for 2 different values
of x∗, 30 and 300 GCPS, and for 2 values of λ, 10 and 100
GCPS. We can clearly see how the power consumption is
smaller for larger values of α once the optimal number of
used PMs is reached. This is mainly conditioned by how µ
decreases as α increases (See Table I). Also, as it can be ob-
served, there is no qualitative difference in the solutions when
α varies for a given configuration. Due to space limitations we
only show a small sample of the results for Trace A, however,
similar results are obtained for Trace B as well as for other
combinations of x∗ and λ.

Regarding the performance of the algorithms, we can see
how the power consumed by the partitions found with VMA2
is lower, in all cases, than the ones obtained by VMA1 and is
always closer to the lower bound obtained by LBVMA. This
shows that the performance of VMA2 is close to the optimal
for (·,m)-VMA. We can see how, in general, VMA1 is able
to match the results of VMA2 when the number of PMs is
relatively low. However, due to the threshold imposed on the
load of the PMs for each algorithm, VMA2 is able to pack the
load in less PMs. We only find an exception in Figure 2(c),
when x∗/λ < 1/3. In this case VMA2 exhibits a behavior
relatively similar to VMA1, not being able to hold to its best
power consumption and reducing the quality of the solution
when the number of PMs increases. However, this flaw is not
replicated when using Trace B, where the average task load is
smaller.

Scenario 2 compares the performance of LBVMA, VMA1
and VMA2 with the other assignment algorithms proposed in
the literature. Here, the values of x∗ and α are fixed to 30
GCPS and 2, respectively, while the value of λ varies. In
particular we use λ = {10, 30, 100} GCPS. Figures 3 and
4 present the results for Trace A and Trace B2.

2For the sake of clarity, we do not show the power consumption resulting
of using only one (or a few) machines and center the figure into more relevant
cases

(a) 10 GCPS, x∗ = 30 (b) 10 GCPS, x∗ = 300 (c) 100 GCPS, x∗ = 30

Fig. 2. (·,m)-VMA: Comparing the power consumed by VMA1 and VMA2 with the lower bound LBVMA for x∗ = {30, 300} GCPS, α = {1.5, 2.5}
and λ of 10 GCPS and 100 GCPS for Trace A (Synthetic traces).

(a) λ = 10 GCPS (b) λ = 30 GCPS (c) λ = 100 GCPS

Fig. 3. (·,m)-VMA: Comparing the power consumed by the different assignment algorithms for x∗ = 30 GCPS, α = 2 and λ = {10, 30, 100} GCPS for
Trace A (Synthetic traces).

(a) λ = 10 GCPS (b) λ = 30 GCPS (c) λ = 100 GCPS

Fig. 4. (·,m)-VMA: Comparing the power consumed by the different assignment algorithms for x∗ = 30 GCPS, α = 2 and λ = {10, 30, 100} GCPS for
Trace B (Google traces).

We can easily see, in general, 3 different trends in Figures
3 and 4. The first trend would include LBVMA, VMA1 and
VMA2; then we have a second one including Striping, RF, NF
and LLF; and, finally, in some sort of no-man’s land, we have
WC. These trends have their origin in power awareness. While
LBVMA, VMA1, VMA2 and WC are power aware, the rest are
not. According to Figures 3 and 4, power aware algorithms
outperform the non power aware ones.

It is interesting to see how WC reduces its power con-
sumption (for Trace A) as the ratio x∗/λ decreases and even
performs better than VMA1 and VMA2 for λ = 100 GCPS.
This does not happen, though, for Trace B due to the smaller

average task load, that gives advantage to VMA1 and VMA2.
With Trace B, due to its nature, WC obtains partitions that use
less PMs and hence, because of the superlinear dependence
of the power consumption on the load, have higher power
consumptions.

Similarly, we can observe that the results in Figure 3(c) are
tighter. This is a consequence, again, of the low value of x∗/λ,
resulting in many PMs not allocating more than 1 or 2 VMs.
In fact, steady state for VMA1, VMA2, WC and even LBVMA
is reached between the 4000 and the 5000 PMs while in the
previous cases was reached before the 2000 PMs. Again, this
behavior is not replicated with Trace B due to its lower average

task load.
Note also that the non power aware algorithms pay a higher

power bill due to the use of a larger amount of PMs (in
general) with a smaller amount of load per PM, resulting in a
very inefficient usage of the available resources. This behavior
is consistent for both Traces A and B.

Finally, observe how the larger the ratio x∗/λ, the larger the
gap between our proposed algorithms, VMA1 and VMA2, and
the other ones. VMA2 exhibits the best results except for the
case of Trace A and x∗/λ ∼ 1/3, that implies having tasks
whose load is much larger than the optimal load of the system,
what should be a rare situation.

Let us now analyze the results of the last scenario. Here we
keep λ = 30 GCPS and α = 2 constant while we vary the
value of x∗. These results are shown in Figure 5 for Trace A
and in Figure 6 for Trace B.

The results are similar for both traces. We can see how
for the smallest value, x∗ = 10 GCPS (x∗/λ ∼ 1/3)
all algorithms achieve a similar result. As the ratio x∗/λ
increases, the results obtained by VMA1 and VMA2 become
better than the ones achieved by WC, LLF, NF, Striping, and
RF, that increase with x∗ and, therefore, lead to larger power
consumptions. Although we do not show them, for the sake
of saving space, the figures for x∗ = {30, 50, 300}, for both
traces A and B, would complete this gradual process, being
the intermediate steps between the already shown ones. These
results are in line with the results from Scenario 2 and are
motivated by the fact that the state-of-the-art algorithms tend
to use a large amount of PMs keeping its average load low
and, hence, paying a high price because of the b parameter.
This, however, is not the case of WC, which, on the other
hand, obtains a more packed partition, loading PMs beyond
x∗ and paying an extra cost due to the superlinearity of the
power consumption with respect to the load. Finally, observe
that, as happened in Scenario 2, with the exception of the case
of x∗ = 10 GCPS for Trace A due to the small value of x∗/λ,
VMA2 achieves the best results.

C. Results for (C,m)-VMA

As we did with (·,m)-VMA in Subsection V-B, we start
by defining the set of PMs we are going to work with. While
for (·,m)-VMA we assumed that PMs had infinite capacity, in
(C,m)-VMA the PMs capacity is bounded. We denote the ca-
pacity as C. We define 2 sets of instances that we name after 2
real PMs from our laboratory, Nemesis and Erdos. We use,
as a reference, their maximum capacity, 11.2 and 153.6 GCPS;
and idle cost b, 80 and 200 W. Jointly with C and b, we use
α = {1.5, 2, 2.5, 3}, and x∗ = {0.5, 0.65, 0.75, 0.9, 1, 1.1} ·C.
We can now compute the value of µ for each combination of
these 4 parameters fully defining, then, our set of PMs, which
is shown in Tables III and II.

In this case we consider 2 different scenarios. In the first one
we compare again VMA1 and VMA2 with LBVMA for different
values of α to evaluate its influence. In the second scenario, we
evaluate the performance of VMA1, VMA2, and all the state-
of-the-art algorithms when α, b and C are fixed and x∗ varies.

TABLE II
SIMULATION PARAMETERS FOR A SET OF MACHINES WITH b AND C

SIMILAR TO ERDOS .

Erdos-like Family Max. Capacity C = 153.6 GCPS
b = 200 W

x∗ [GCPS] x∗[%C]
µ

α = 1.5 α = 2 α = 2.5 α = 3
76.8 50 1.88E-14 3.39E-20 8.16E-26 2.21E-31

99.84 65 1.27E-14 2.01E-20 4.23E-26 1.00E-31
115.2 75 1.02E-14 1.51E-20 2.96E-26 6.54E-32
138.24 90 7.78E-15 1.05E-20 1.88E-26 3.79E-32
153.6 100 6.64E-15 8.48E-21 1.44E-26 2.76E-32
168.96 110 5.76E-15 7.01E-21 1.14E-26 2.07E-32

TABLE III
SIMULATION PARAMETERS FOR A SET OF MACHINES WITH b AND C

SIMILAR TO NEMESIS .

Nemesis-like Family Max. Capacity C = 11.2 GCPS
b = 80 W

x∗ [GCPS] x∗[%C]
µ

α = 1.5 α = 2 α = 2.5 α = 3
5.6 50 3.82E-13 2.55E-18 2.27E-23 2.28E-28
7.28 65 2.58E-13 1.51E-18 1.18E-23 1.04E-28
8.4 75 2.08E-13 1.13E-18 8.25E-24 6.75E-29

10.08 90 1.58E-13 7.87E-19 5.23E-24 3.91E-29
11.2 100 1.35E-13 6.38E-19 4.02E-24 2.85E-29

12.32 110 1.17E-13 5.27E-19 3.17E-24 2.14E-29

Note that all simulations are run for both Trace A and Trace
B as well as for both families of PMs, however, due to space
limitations only the most relevant results are shown. Similarly,
observe that results are presented, again, as graphs in which
the power consumed is represented as a function of the number
of PMs used but, this time, these results do not start from 1
PM. Each one of the results of the different algorithms starts
from the number of PMs for which it obtained a valid solution
where PMs do not have to be loaded beyond their capacity C.

The results for the first scenario, shown in Figures 7, throw
very similar results to the ones obtained for (·,m)-VMA.
VMA2 performance is again very close to LBVMA when it
does not match it. Similarly, VMA1 is again worse than VMA2
due to the fact that it tends to pack less VMs per PM than
VMA1. Observe that we show two different values of x∗ and
different Traces to show the consistency of the results.

Figure 8 and Figure 9 show the results obtained for the
second scenario for Traces A and B, respectively. In them
we compare the performance of VMA1, VMA2, LBVMA, FF,
MLF, Packing, RR, RF, LFF, NF, Striping and WC for PMs
such as the ones defined in Table III. We can easily observe,
independently of the trace used, that RP, LFF, NF and Striping
consistently obtain partitions which result in a higher cost
in Watts than the other algorithms. The nature of this set of
algorithms implies using a large number of PMs with a small
amount of load per PM, resulting, always, in a higher power
consumption. For this reason, and for the sake of clarity when
plotting and comparing the other algorithms, we only show
RP, LFF, NF and Striping in subfigures 8(a), and 9(a) as an
example. The rest of the subfigures from Figure 8 and Figure
9 zoom in the results of the other algorithms.

(a) x∗ = 10 (b) x∗ = 100 (c) x∗ = 500

Fig. 5. (·,m)-VMA: Comparing the power consumed by the different assignment algorithms for λ = 30 GCPS, α = 2 and increasing values of x∗ for
Trace A (Synthetic traces).

(a) x∗ = 10 (b) x∗ = 100 (c) x∗ = 500

Fig. 6. (·,m)-VMA: Comparing the power consumed by the different assignment algorithms for λ = 30 GCPS, α = 2 and increasing values of x∗ for
Trace B (Google traces).

(a) Trace A, C = 153.6, x∗ = 0.65 · C (b) Trace B, C = 153.6, x∗ = 0.65 · C (c) Trace B, C = 153.6, x∗ = 0.9 · C

Fig. 7. (C,m)-VMA: Comparing the power consumed by VMA1 and VMA2 to LBVMA for x∗ = {0.65, 0.9} · C, C = 153.6 GCPS, α = {1.5, 2.5} for
Traces A and B.

Oppositely to the (·,m)-VMA case, in (C,m)-VMA WC
exhibits a better performance than VMA1, that also loses in
the comparison with the group of bin-packing-like algorithms
formed by FF, MLF, Packing and RR in every case except for
Trace A and x∗ = 0.5 ·C, shown in Figure 8(c)3. This worse
performance of VMA1 is a consequence of the ability of the
other algorithms to obtain more packed solutions whose load
is, additionally, closer to x∗ than VMA1’s solution.

On the other hand, VMA2 results are similar or slightly

3The behaviour shown in Figure 8(c) is not replicated for Trace B because
of the smaller average load of Trace B VMs.

worse than FF, MLF, Packing and RR for Trace A when
x∗ > 0.75C (Figure 8(a)). However, VMA2 still outperforms
the other algorithms when x∗ ≤ 0.75C (Figures 8(b) and 8(c)),
or when the average VM task load is smaller, i.e., all the cases
of Trace B.

VI. CONCLUSIONS

In this paper we have compared multiple allocation algo-
rithms empirically. We have proved, by simulations that the al-
gorithm we propose, VMA2, consistently obtains better results
that other algorithms of different nature (packing algorithms,
power aware, non power aware, . . .) in two of the particular

(a) x∗ = 1 (b) x∗ = 0.75 (c) x∗ = 0.5

Fig. 8. (C,m)-VMA: Comparing the power consumed by the different assignment algorithms for C = 11.2 GCPS, α = 2 and different values of x∗ for
Trace A (Synthetic traces).

(a) x∗ = 1 (b) x∗ = 0.75 (c) x∗ = 0.5

Fig. 9. (C,m)-VMA: Comparing the power consumed by the different assignment algorithms for C = 11.2 GCPS, α = 2 and different values of x∗ for
Trace B (Google traces).

cases of the virtual machine allocation problem, being one
of them, (C,m)-VMA, the closest one to real environments.
These simulations have been carried out with both synthetic
and real traces, being VMA2 results even better with the real
ones.

Having outperformed VMA2 algorithms which are currently
being used in popular cloud platforms, such as Eucalyptus or
OpenNebula, we firmly think VMA2 is ready to be deployed in
such or similar platforms, which will be the natural extension
to this work.

REFERENCES

[1] Amazon web services. http://aws.amazon.com. Accessed August 27,
2012.

[2] Citrix. http://www.citrix.com. Accessed August 27, 2012.
[3] Rackspace. http://www.rackspace.com. Accessed August 27, 2012.
[4] Jordi Arjona, Angelos Chatzipapas, Antonio Fernandez Anta, and

Vincenzo Mancuso. A measurement-based analysis of the energy
consumption of data center servers. In e-Energy. ACM, 2014.

[5] Jordi Arjona Aroca, Antonio Fernández Anta, Miguel A.
Mosteiro, Christopher Thraves, and Lin Wang. Power-efficient
assignment of virtual machines to physical machines. Future
Generation Computer Systems, 2015. In press, available at
http://dx.doi.org/10.1016/j.future.2015.01.006.

[6] Christian Baun, Marcel Kunze, and Viktor Mauch. The koala cloud
manager: Cloud service management the easy way. In Cloud Computing
(CLOUD), 2011 IEEE International Conference on, pages 744–745.
IEEE, 2011.

[7] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cam-
bridge University Press, New York, NY, USA, 2004.

[8] Eucalyptus. Eucalyptus. http://www.eucalyptus.com/. Accessed January
20th, 2013.

[9] Joseph L. Hellerstein. Google cluster data. Google research blog,
January 2010. Posted at http://googleresearch.blogspot.com/2010/01/
google-cluster-data.html.

[10] R. Jansen and P.R. Brenner. Energy efficient virtual machine allocation
in the cloud. In Green Computing Conference and Workshops (IGCC),
2011 International, pages 1–8, 2011.

[11] K. Mills, J. Filliben, and C. Dabrowski. Comparing vm-placement
algorithms for on-demand clouds. In Proceedings of the IEEE Third
International Conference on Cloud Computing Technology and Science,
pages 91–98, 2011.

[12] OpenNebula. Opennebula. http://opennebula.org/. Accessed January
20th, 2013.

[13] Shekhar Srikantaiah, Aman Kansal, and Feng Zhao. Energy aware con-
solidation for cloud computing. In Proceedings of the 2008 conference
on Power aware computing and systems, volume 10 of HotPower’08.
USENIX Association, 2008.

