
Making “Fast” Atomic Operations
Computationally Tractable∗

Antonio Fernández Anta1, Nicolas Nicolaou1, and Alexandru Popa2

1 IMDEA Networks Institute
Madrid, Spain
antonio.fernandez@imdea.org, nicolas.nicolaou@imdea.org

2 Department of Computer Science, Nazarbayev University
Astana, Kazakhstan
alexandru.popa@nu.edu.kz

Abstract
Communication overhead is the most commonly used performance metric for the operation com-
plexity of distributed algorithms in message-passing environments. However, aside with com-
munication, many distributed operations utilize complex computations to reach their desired
outcomes. Therefore, a most accurate operation latency measure should account of both compu-
tation and communication metrics.

In this paper we focus on the efficiency of read and write operations in an atomic read/write
shared memory emulation in the message-passing environment. We examine the operation com-
plexity of the best known atomic register algorithm, presented in [2], that allows all read and
write operations to complete in a single communication round-trip. Such operations are called
fast. At its heart, the algorithm utilizes a predicate to allow processes to compute their outcome.
We show that the predicate used in [2] is computationally hard, by devising a computationally
equivalent problem and reducing that to Maximum Biclique, a known NP-hard problem. To
improve the computational complexity of the algorithm we derive a new predicate that leads to a
new algorithm, we call ccFast, and has the following properties: (i) can be computed in polyno-
mial time, rendering each read operation in ccFast tractable compared to the read operations
in the original algorithm, (ii) the messages used in ccFast are reduced in size, compared to the
original algorithm, by almost a linear factor, (iii) allows all operations in ccFast to be fast, and
(iv) allows ccFast to preserve atomicity. A linear time algorithm for the computation of the new
predicate is presented along with an analysis of the message complexity of the new algorithm.
We believe that the new algorithm redefines the term fast capturing both the communication
and the computation metrics of each operation.

1998 ACM Subject Classification C.3.4 Distributed Systems, C.4 Performance of Systems

Keywords and phrases atomicity, read/write objects, shared memory, computational complexity

1 Introduction

Emulating atomic [8] (linearizable [7]) read/write objects in message-passing environments
is one of the fundamental problems in distributed computing. The problem becomes more
challenging when participants in the service may fail and the environment is asynchron-
ous, i.e. it cannot provide any time guarantees on the delivery of the messages and the

∗ Supported in part by FP7-PEOPLE-2013-IEF grant ATOMICDFS No:629088, Ministerio de Eco-
nomia y Competitividad grant TEC2014- 55713-R, Regional Government of Madrid (CM) grant
Cloud4BigData (S2013/ICE-2894, co- funded by FSE & FEDER), NSF of China grant 61520106005,
and European Commission H2020 grants ReCred and NOTRE.

© Antonio Fernández Anta, Nicolas Nicolaou and Alexandru Popa;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Making “Fast” Atomic Operations Computationally Tractable

computation speeds. To cope with failures, traditional distributed object implementations
like [1, 10], use redundancy by replicating the object to multiple (possibly geographically
dispersed) network locations (replica servers). Replication however raises the challenge of
consistency, as multiple object copies can be accessed concurrently by multiple processes.
To determine the value of the object when this is accessed concurrently, researchers defined
several consistency guarantees, the strongest of those being atomicity. Atomicity is the most
intuitive consistency semantic as it provides the illusion of a single-copy object that serializes
all accesses: each read operation returns the value of the latest preceding write operation,
and this value is at least as recent as that returned by any preceding read.

The seminal work of Attiya, Bar-Noy, and Dolev [1], was the first to present an algorithm,
we refer to as ABD, to implement Single-Writer, Multiple-Reader (SWMR) atomic objects,
in message-passing, crash-prone, and asynchronous environments. Here, 〈timestamp, value〉
pairs are used to order the write operations, and each operation is guaranteed to terminate
as long as some majority of replica servers do not crash. The write protocol involves a
single round-trip communication, while the read protocol involves two round-trip stages. In
particular, the writer increments the timestamp for each write and propagates the new value
along with its timestamp to some majority of replicas. The readers are implemented as a
two-phase protocol, where the first phase obtains from some majority of the replicas their
〈timestamp, value〉 pairs, and uses the value corresponding to the highest timestamp as the
return value. Before returning, each reader performs a second phase, in which it propagates
the highest 〈timestamp, value〉 pair to some majority of replica servers, ensuring that any
subsequent read will discover the value that is at least as recent. Here atomicity is guaranteed
in all executions relying on the fact that any two majorities have a non-empty intersection.
Avoidance of the second round-trip could lead to violations of atomicity. Following this
development, a folklore belief persisted that in asynchronous multi-reader atomic memory
implementations “reads must write”.

The work by Dutta et al. [2] refuted this belief, by presenting atomic register implement-
ations where reads involve only a single communication round-trip. Such an implementation
is called fast. This is shown to be possible whenever the number of readers R is appropri-
ately constrained with respect to the number of replicas S and the maximum number of
crashes f in the system; this constraint is expressed by R < S

f − 2. In this same work
the authors showed that it is not possible to devise fast implementations in the multiple-
write and multiple-reader (MWMR) model. Subsequently, works like [5, 6], proposed im-
plementations in the SWMR model where some operations were allowed to perform two
communication round-trips, in an attempt to relax the constraint proposed in [2] and allow
unbounded number of readers. Such implementations traded communication for scalability.
Under conditions of low concurrency, this requirement allowed most reads to complete in
a single communication round-trip. Even with this relaxed model [6] showed that MWMR
implementations where all write are fast are not possible. Following these developments, [3]
provided tight bounds on the efficiency of read/write operations in terms of communication
round-trips, and introduced the first algorithm to allow some fast read and write operations
in the MWMR model.

A trend appeared in the algorithms that aimed for fast operations: algorithms with lower
communication rounds demanded higher computation overhead at the processes. The first
work to question the computational complexities of the “fast” implementations, and how
that affects the performance of the algorithms, was presented by Georgiou et al. [4]. In
that paper the authors analyzed the computational complexity of the algorithm presented
in [3], the only algorithm that allows both fast reads and writes in the MWMR model,

A. Fernández Anta, N.Nicolaou and A. Popa 3

and showed both theoretically and experimentally that the computational overhead of the
algorithm was suppressing the communication costs. In particular, the authors expressed the
predicate used in the algorithm by a computationally equivalent problem and they showed
that such a problem is NP-hard. To improve the complexity of the algorithm presented in
[3], they proposed a polynomial approximation algorithm.
Contributions. In this paper, we focus in the efficiency of read and write operations in
distributed SWMR atomic read/write register implementations. We show that the compu-
tation costs have an impact on the best known atomic register implementation, presented in
[2], and we propose a deterministic solution to improve both the computational and commu-
nication burdens of the original algorithm while maintaining fault-tolerance and consistency.
Enumerated our contributions are the following:

We introduce a new problem that is computationally equivalent to the predicate used
in [2]. We show that the new problem, and thus the computation of the predicate, is
NP-hard. For our proof we reduce the new problem to the Maximal Biclique problem,
which is known to be an NP-hard problem.
We then devise a revised fast implementation, called ccFast, which uses a new polyno-
mial time predicate to determine the value to be returned by each read operation. The
idea of the new predicate is to examine the replies received in the first communication
round of a read operation and determine how many processes witnessed the maximum
timestamp among those replies. With the new predicate we reduce the size of each
message sent by the replicas, and we prove rigorously that atomicity is preserved.
Finally, we analyze the operation complexity of ccFast, in terms of communication,
computation, and message length. For the computational complexity, we provide a linear
time algorithm for the computation of the new predicate. The algorithm utilizes buckets
to count the number of appearances of each timestamp in the collected replies. We
present a complexity analysis of the proposed algorithm and we prove that it correctly
computes the predicate of ccFast.

Our results lower the bar of operation latency in SWMR atomic object implementations
in the message-passing, asynchronous environment and redefine the term fast to capture
both the communication and computation overheads of the proposed algorithms.

2 Model

We assume a system consisting of three distinct sets of processes: a single process (the writer)
with identifier w, a set R of readers, and a set S of replica servers. Let I = {w} ∪ R ∪ S.
In a read/write object implementation, we assume that the object may take a value from a
set V . The writer is the sole process that is allowed to modify the value of the object, the
readers are allowed to obtain the value of the object, and each server maintains a copy of the
object to ensure the availability of the object in case of failures. We assume an asynchronous
environment, where processes communicate by exchanging messages. The writer, any subset
of readers, and up to f servers may crash without any notice.

Each process p of the system can be modeled as an I/O Automaton Ap [11]. The
automaton Ap of process p is defined over a set of states, states(Ap), and a set of actions,
actions(A). There is a state σ0,p ∈ states(Ap) which is the initial state of automaton Ap.
An algorithm A is the automaton obtained from the composition of automata Ap, for p ∈ I.
A state σ ∈ states(A) is a vector containing a state for each process p ∈ I and the state
σ0 ∈ states(A) is the initial state of the system that contains σ0,p for each process p ∈ I.
The set of actions of A is actions(A) =

⋃
p∈I actions(Ap). An execution fragment φ of A is

4 Making “Fast” Atomic Operations Computationally Tractable

an alternate sequence σ1, α1, σ2, . . . , σk−1, αk−1, σk of states and actions, s.t. σi ∈ states(A)
and αi ∈ actions(A), for 1 ≤ i ≤ k. An execution is the execution fragment starting with
some initial state σ0 of A. We say that an execution fragment φ′ extends an execution
fragment φ (or execution), denoted by φ ◦ φ′, if the last state of φ is the first state of φ′. A
triple 〈σi, αi+1, σi+1〉 is called a step and denotes the transition from state σi to state σi+1
as a result of the execution of action αi+1. A process p crashes in an execution ξ if the event
failp appears in ξ; otherwise p is correct. Notice that if a process p crashes, then failp is the
last action of that process in ξ.

In a read/write atomic object implementation each automaton A contains an invocation
action readp,O (or write(v)p,O) to invoke a read (resp. write) operation π on an object O.
Similarly, read-ack(v)p,O and write-ack(v)p,O are the response actions and return the result
of the operation π on O. The steps that contain the invocation and response actions, are
called invocation and response steps respectively. An operation π is complete in an execution
ξ, if ξ contains both the invocation and the matching response actions for π; otherwise π is
incomplete. An execution ξ is well formed if any process p that invokes an operation π in
ξ does not invoke any other operation π′ before the matching response action of π appears
in ξ. In other words each operation invokes one operation at a time. Finally we say that an
operation π precedes an operation π′ in an execution ξ, denoted by π → π′, if the response
step of π appears before the invocation step of π′ in ξ. The two operations are concurrent
if none precedes the other.

Correctness of an implementation of an atomic read/write object is defined in terms of the
atomicity and termination properties. The termination property requires that any operation
invoked by a correct process eventually completes. Atomicity is defined as follows [9]. For
any execution of a memory service, all the completed read and write operations can be
partially ordered by an ordering ≺, so that the following properties are satisfied:

P1. The partial order is consistent with the external order of invocation and responses, that
is, there do not exist operations π1 and π2, such that π1 completes before π2 starts, yet
π2 ≺ π1.

P2. All write operations are totally ordered and every read operation is ordered with respect
to all the writes.

P3. Every read operation returns the value of the last write preceding it in the partial order,
and any read operation ordered before all writes returns the initial value of the object.

For the rest of the paper we assume a single register memory system. By composing multiple
single register implementations, one may obtain a complete atomic memory [9]. Thus, we
omit further mention of object names.
Efficiency Metrics. We are interested in the complexity of each read and write operation.
The complexity of each operation π is measured from the invocation step of the π to the
response step of π. To measure the complexity of an operation π that is invoked by a process
p we use the following three metrics: (i) communication round-trips , (ii) computation steps
taken by p during π, and (iii) message bit complexity which measures the length of the
messages used during π. A communication round-trip (or simply round) is more formally
defined in the following definition that appeared in [2, 6, 5]:

I Definition 1. Process p performs a communication round during operation π if all of the
following hold:
1. p sends request messages that are a part of π to a set of processes,
2. any process q that receives a request message from p for operation π, replies without

delay, i.e. without waiting for any other messages before replying to π.
3. when process p receives “enough” replies it terminates the round

A. Fernández Anta, N.Nicolaou and A. Popa 5

Algorithm WR RR WC RC WB RB
ABD 1 2 O(1) O(|S|) O(lg |V |) O(lg |V |)
Fast 1 1 O(1) O(|S|2 · 2|S|) O(lg |V |) Θ(|S|+ lg |V |)

ccFast 1 1 O(1) O(|S|) O(lg |V |) O(lg |S|+ lg |V |)

Table 1 Communication, Computation, and Message-Bit Complexities of ABD vs Fast vs
ccFast. (WR/RR: write/read-rounds, WC/RC: write/read-computation, WB/RB: write/read-
message bits)

At the end of a communication round process p may complete π or start a new round.
Operation π is fast [2] if it completes after its first communication round; an implementation
is fast if in each execution all operations are fast.

3 Fastness and its Implications in Atomic Memory Implementations

The algorithm by Dutta et al. in 2004 [2](we refer to it as Fast) was the first to present
an atomic register implementation for the message-passing environment where all read and
write operations required just a single communication round before completing. The same
work showed that for any implementation to be fast it must be the case that the number of
readers are constrained with respect to the number of servers and server failures in the service
by |R| < |S|

f − 1. Fast is using 〈timestamp, value〉 pairs as in ABD [1] to impose an order
on the write operations. The write operation is almost identical to the one round write in
[1]: the writer increments its local timestamp, and sends the new timestamp with the value
to be written to the majority of the servers. The read operation is much different as it only
takes a singe round to complete. To avoid the second round for each read operation, Fast
uses two mechanisms: (i) a recording mechanism at the servers, and (ii) a predicate that
uses the server recordings at the readers. Essentially each server records all the processes
that witness its local timestamp, in a set called seen. This set of processes is reset whenever
the server learns a new timestamp. The predicate at the readers is the following:

∃α ∈ [1, . . . , |R|] ∧ MS ⊂ S s.t. (1)
∀s ∈MS, s.ts = maxTs ∧ |MS| ≥ |S| − αf ∧ |

⋂
s∈MS

s.seen| ≥ α (2)

Essentially the reader looks at the seen sets of the servers that replied, and tries to extract
whether “enough” processes witnessed the maximum timestamp. If the predicate holds, the
reader returns the value associated with the maximum timestamp. Otherwise it returns
the value associated with the previous timestamp. Notice here that the predicate takes
in account which processes witnessed the latest timestamp as it examines the intersection
of the seen sets. Let us now examine what are the complexity costs of Fast in terms of
communication, computation and message size. Table 1, presents the comparison of Fast
with ABD in all three complexity metrics. Notice that we assume that all three algorithms
utilize the same technique to generate timestamps. Thus, we ommit counting the overhead
that the timestamp may incur to the complexities presented in Table 1.
Communication Complexity. As previously mentioned, Fast uses one communication
round-trip for each read and write operation. That is, each operation sends messages to all
the servers and waits replies from a majority. No further communication is required once
those replies are received. ABD on the other hand needs one round per write and two
rounds per read operation.

6 Making “Fast” Atomic Operations Computationally Tractable

Computation Complexity. The reduction on the communication rounds had a negative
impact on the computational complexity of Fast. The write operation, as also in ABD,
terminates once the appropriate number of servers reply, without imposing any further
computation. During the read operation the computation complexity of Fast explodes.
If we try to examine all possible subsets MS of S, then we obtain 2|S| possibilities. If we
restrict this space to include only the subsets with size |MS| = |S|−αf for all α ∈ [1, . . . ,R]
(namely 1 ≤ |MS| ≤ |S| − f), then we may examine up to 2(|S|−f) different subsets. Recall
also that each seen set contains identifiers from the set R∪{w}, and hence at most |R|+ 1
elements. To compute the intersection we need to check for each element if it belongs in
all the seen sets. As MS may include |S| − f servers (and thus as many seen sets) the
computation of the intersection may take (|S|− f)(|R|+ 1) comparisons. As |R| is bounded
by |S| then the previous quantity is bounded by O(|S|2). So that leads to an upper bound
of O(|S|2 · 2|S|). Such complexity may explode the computation time even when the size of
S is small. As however the communication complexity is linear to the size of S then small
set of servers will keep the communication overhead small. In contrast the computation
complexity in ABD is bounded by O(|S|) as the reader parses the replies of at most |S|
servers to detect the maximum timestamp.
Message Bit Complexity. Finally, for each write operation in both Fast and ABD,
all servers may send messages containing a value and a timestamp, thus resulting in a bit
complexity of O(lg |V |) per message. The main difference in the message bit complexity lies
in the fact that in Fast servers attach the seen set along with the 〈value, timestamp〉 pair
for each read operation. To obtain a tight bound we assume that each server sends a bitmap
indicating whether each client identifier belongs or not in its seen set. As each seen set
may contain up to |R|+ 1 identifiers, and since |R| < |S|

f − 1, then the bitmap will contain
less than or equal to |S| bits. Hence the length of each message in Fast is bounded by
Θ(|S|+ lg |V |).

4 Formulation and Hardness of the Predicate in Fast

We formulate the predicate used in Fast by the following computational problem.
I Problem 1. Input: Two sets U1 = {s1, s2, . . . , sn}, U2 = {p1, p2, . . . , pk}, where ∀si ∈
U1, si ⊆ U2. Moreover, we are given two integers α and f such that n− αf ≥ 1.

Goal: Is there a set M ⊆ U1 such that | ∩s∈M s| ≥ α and |M | > n− αf?
It is easy to see the computational equivalence of the above problem and the predicate in

Fast: U1 can be substituted by the set of all the seen sets of the servers that replied, M by
MS, and U2 by R∪{w}. We prove that the Problem 1 is NP-hard via a reduction from the
decision version of the Maximum Biclique problem defined below. The reduction is similar
to the one in [12] for showing that the Maximum k-Intersection Problem is NP-hard.

I Definition 2 (Maximum Biclique Problem). Given a bipartite graph G = (X,Y,E) a
biclique consists of two sets A ⊆ X, B ⊆ Y such that ∀a ∈ A, ∀b ∈ B, (a, b) ∈ E. The goal
is to decide if the given graph G has a biclique of size at least c.

I Theorem 3. Problem 1 is NP-hard.

Proof. We show that if we can solve Problem 1 in polynomial time, then we can solve the
decision version of the Maximum Biclique problem in polynomial time. Given an instance
of the biclique problem, i.e., a bipartite graph G = (X,Y,E), we construct the following
instance of Problem 1. First, let U2 = Y . Then, each element si ∈ U1 corresponds to a
vertex v ∈ X such that si = {u ∈ Y : (v, u) ∈ E}. See Figure 1 for an example.

A. Fernández Anta, N.Nicolaou and A. Popa 7

Figure 1 The left side of the graph (nodes A, B and C) corresponds to the elements of the set
U1 and the right side (nodes 1,2 and 3) corresponds to the elements of the set U1. Thus, A = {1, 2},
B = {2, 3} and C = {1, 2, 3}. The maximum biclique in this example has two nodes on each side.
In the figure, one of the two maximum bicliques is emphasized with bold edges.

In order to decide if a biclique of size at least c exists, we solve |X| instances of Problem 1
where α and f are set such that α·(n−αf) = c. If there exists a positive instance of Problem 1
among those |X| checked, then there exists a biclique of size at least c. Otherwise, no such
biclique exists.

We focus now on two particular values of α and f such that α · (n − αf) = c and we
prove the graph G has a biclique of size c with α vertices in the set X and n− αf vertices
on the other side, if and only if a subset M that satisfies the constraints of Problem 1 exists.

First, given a biclique A ∪ B of size c with |A| = α, then the set M ⊆ U1 contains the
elements of U1 associated with the vertices in A. Since the biclique A ∪ B has size c, it
follows that the intersection of the sets in M is larger that c/α = n− αf .

Conversely, given a set M of size α whose elements have intersection at least n − αf ,
we can find a biclique of size c = α · (n − αf). The elements A ⊆ X of the biclique are
those corresponding to the elements of the set M . Since the elements in the set M have
intersection greater than or equal to n−αf , we have that the common neighborhood of the
vertices in A is greater than or equal to n − αf . Thus, the size of the biclique is at least
c = α · (n− αf). J

5 Algorithm ccFast: Refining “Fastness” for Atomic Reads

In this section we modify the algorithm presented in [2] to make it even “faster”. Since we
allow only single round trip operations, the new algorithm adheres to the bound presented
in [2] and [3] regarding the possible number of read participants in the service. Thus, the
algorithm is possible only if |R| < |S|

f −1. Also, from the results in [2, 6], it follows that such
algorithm is impossible in the MWMR model. To expedite the calculation of the predicate
we aim to eliminate the use of sets in the predicate and we focused on the question: “Can we
preserve atomicity if we know how many and not which processes read the latest value of a
server?”. An answer to this question could yield two benefits: (i) reduce the size of messages,
and (ii) reduce the computation time of the predicate. We provide a positive answer to this
question and we present a new algorithm, we call ccFast, that is communicationally the
same and computationally faster than algorithm Fast.

The formal specification of the algorithm appears in Figure 1. Here we present a high
level description of each protocol in the algorithm. The counter variables used throughout
the algorithm are solely used to help processes identify “fresh” from “stale” messages due
to asynchrony. In the rest of the description we will not refer to the counters, but rather we
assume that the messages received by each process are fresh messages.
Write Protocol. To perform a write operation, the writer process w calls the write(val)
function. During the write operation the writer stores the value to be written in a variable

8 Making “Fast” Atomic Operations Computationally Tractable

Algorithm 1 Read, Write and Server protocols of algorithm ccFast
1: at the writer w
2: Components:
3: ts ∈ N+, v, vp ∈ V,wcounter ∈ N+

4: Initialization:
5: ts← 0, v ← ⊥, vp← ⊥, wcounter ← 0
6: function write(val)
7: vp← v; v ← val;
8: ts← ts + 1
9: wcounter ← wcounter + 1
10: send(〈ts, v, vp〉, w, wcounter) to all servers
11: wait until |S| − f servers reply
12: return(OK)
13: end function

14: at each reader ri

15: Components:
16: ts ∈ N+, maxTS ∈ N+, v, vp ∈ V, rcounter ∈ N+

17: srvAck ⊆ S ×M, maxTSmsg ⊆M
18: Initialization:
19: ts← 0, maxTS ← 0, v ← ⊥, vp← ⊥, rcounter ← 0
20: srvAck ← ∅, maxTSmsg ← ∅
21: function read
22: rcounter ← rcounter + 1
23: send(〈ts, v, vp〉, ri, rcounter) to all servers
24: wait until |srvAck| = |S|−f servers reply //Collect the (serverid, 〈〈ts′, v′, vp′〉, views〉) pairs in srvAck
25: maxTS ← max({m.ts′|(s,m) ∈ srvAck})
26: maxAck ← {(s,m)|(s,m) ∈ srvAck ∧ m.ts′ = maxTS}
27: 〈ts, v, vp〉 ← m.〈ts′, v′, vp′〉 for (∗,m) ∈ maxAck
28: if ∃α ∈ [1, |R|+ 1] s.t. MS = {s : (s,m) ∈ maxAck ∧ m.views ≥ α} and |MS| ≥ |S| − αf then
29: return(v)
30: else
31: retutn(vp)
32: end if
33: end function

34: at each server si

35: Components:
36: ts ∈ N+, seen ⊆ R ∪ {w}, v, vp ∈ V,Counter[1 . . . |R|+ 1]
37: Initialization:
38: ts← 0, seen← ∅, v, vp ∈ V,Counter[i]← 0 for i ∈ R ∪ {w}
39: function rcv(〈ts′, v′, vp′〉, q, counter) //Called upon reception of a message
40: if Counter[q] < counter then
41: if ts′ > ts then
42: 〈ts, v, vp〉 ← 〈ts′, v′, vp′〉
43: seen← {q}
44: else
45: seen← seen ∪ {q}
46: end if
47: send(〈ts, v, vp〉, |seen|) to q
48: end if
49: end function

v and the previous written value in a variable vp (Line 7). Then it increments its local
timestamp variable ts (Line 8), and sends a write request along with the triple 〈ts, v, vp〉 to
all the servers and waits for |S| − f replies. Once those replies are received the operation
terminates.
Server Protocol. We now describe the server protocol before proceeding to the read
protocol, as it contains the recording mechanism which generates information that is used
by each read to determine the value of the register. Each server in S maintains a timestamp
variable along with the values associated with that timestamp. In addition, the server
maintains a set of reader and writer identifiers, called seen. Initially each server is waiting
for read and/or write requests. When a request is received the server examines if the
timestamp ts′ attached in the request is larger than its local timestamp ts (Line 41). If
ts′ > ts, the server updates its local timestamp and values to be equal to the ones attached
in the received message (Line 42), and resets its seen set to include only the identifier of
the process that sent this message (Line 43); otherwise the server just inserts the identifier

A. Fernández Anta, N.Nicolaou and A. Popa 9

of the sender in the seen set (Line 45). Then, the server replies to the sender by sending its
local 〈ts, v, vp〉 triple, and the size of its recording set |seen|. This is a departure from the
Fast algorithm where the server was attaching the complete seen set.
Read Protocol. The read protocol is the most involved. When a reader process invokes a
read operation it sends read requests along with its local 〈ts, v, vp〉 triple to all the servers,
and waits for |S|−f of them to reply. Once the reader receives those replies it: (i) discovers
the maximum timestamp, maxTS, among the messages, (ii) collects all the messages that
contained maxTS in a set maxAck, and (iii) updates its local 〈ts, v, vp〉 triple to be equal
to the triple attached in one of those messages (Lines 25-27). Then it runs the following
predicate on the set maxAck (Line 28):

∃α ∈ [1, |R|] s.t. MS = {s : (s,m) ∈ maxAck ∧ m.views ≥ α} and |MS| ≥ |S| − αf

The predicate examines how many processes the maximum timestamp has been sent to. If
more than |S| − αf servers sent this timestamp to more than α processes, for α between
[1, . . . , |R|], then the predicate is true and the read operation returns the value associated
with maxTS, namely v; otherwise the read operation returns the value associated with
maxTS − 1, namely vp.
Idea of the predicate. The goal of the predicate is to help a read operation to predict
the value that was potentially returned by a preceding read operation. To understand the
idea behind the predicate consider the following execution, ξ1. Let the writer perform a
write operation ω and receive replies from a set S1 of |S| − f servers. Let a reader follow
and perform a read operation ρ1 that receives replies from a set of servers S2 again of size
|S| − f that misses f servers that replied to the write operation. Due to asynchrony, an
operation may miss a set of servers if the messages of the operation are delayed to reach
any servers in that set. So the two sets intersect in |S1 ∩ S2| = |S| − 2f servers. Consider
now ξ2 where the write operation ω is not complete and only the servers in S1 ∩ S2 receive
the write requests. If ρ1 receive replies from the same set S2 in ξ2 then it won’t be able to
distinguish the two executions. In ξ1 however the read has to return the value written, as
the write in that execution proceeds the read operation. Thus, in ξ2 the read has to return
the value written as well. If we extend ξ2 by another read operation ρ2 from a third process,
then it may receive replies from a set S3 missing f servers in |S1 ∩ S2|. Thus it may see
the value written in |S1 ∩ S2 ∩ S3| = |S| − 3f servers. But since there is another read that
saw the value from these servers (ρ1) then ρ2 has to return the written value to preserve
atomicity. Observe now that ρ1 saw the written value from |S| − 2f servers and each server
replied to both {w, ρ1}, and ρ2 saw the written value from |S| − 3f and each server replied
to all three {ω, ρ1, ρ2}. By continuing with the same logic, we derive the predicate that if a
read sees a value written in |S| − αf servers and each of those servers sent this value to α
other processes then we return the written value.

Notice that in order for an operation to see the written value it must be the case that
there is at least one server that replied with that value, and thus |S| − αf ≥ 1. Solving
this equation results in α ≤ S−1

f . But α is the number of processes in the system. As
the maximum number of processes is |R|+ 1, hence we derive the bound on the number of
possible reader participants that |R| < S−1

f .

5.1 Algorithm Correctness
To show that the algorithm is correct we need to show that each correct process terminates
(liveness) and that the algorithm satisfies the properties of atomicity (safety). As the main
departure of ccFast from Fast, is the predicate logic, some of the proofs that follow are

10 Making “Fast” Atomic Operations Computationally Tractable

very similar to the ones presented in [2]. The lack of complete knowledge of which processes
witnessed a value, introduced challenges in proving that consistency is preserved even when
we know how many witnessed a value. Termination is trivially satisfied with respect to our
failure model: up to f servers may fail and each operation waits for no more than |S| − f
replies. The atomicity properties can be expressed in terms of timestamps as follows:

A1. For each process p the ts variable is non-negative and monotonically nondecreasing.
A2. If a read ρ succeeds a write operation ω(ts) and returns a timestamp ts′, then ts′ ≥ ts.
A3. If a read ρ returns ts′, then either a write ω(ts′) precedes ρ, i.e. ω(ts′)→ ρ, or ω(ts′) is

concurrent with ρ.
A4. If ρ1 and ρ2 are two read operations such that ρ1 → ρ2 and ρ1 returns ts1, then ρ2

returns ts2 ≥ ts1.

Monotonicity allows the ordering of the values according to their associated timestamps.
So Lemma 4 shows that the ts variable maintained by each process in the system is mono-
tonically increasing. Let us first make the following observation:

I Lemma 4. In any execution ξ of the algorithm, if a server s replies with a timestamp ts
at time T , then s replies with a timestamp ts′ ≥ ts at any time T ′ > T .

Proof. A server attaches in each reply its local timestamp. Its local timestamp in turn is
updated only whenever the server receives a higher timestamp (Lines 37-38). So the server
local timestamp is monotonically non-decreasing and the lemma follows. J

The following is also true for a server process.

I Lemma 5. In any execution ξ of the algorithm, if a server s receives a timestamp ts at
time T from a process p, then s replies with a timestamp ts′ ≥ ts at any time T ′ > T .

Proof. If the local timestamp of the server s, tss, is smaller than ts, then tss = ts. Otherwise
tss does not change and remains tss ≥ ts. In any case s replies with a timestamp tss ≥ ts

to π. By Lemma 4 the server s attaches a timestamp ts′ ≥ tss, and hence ts′ ≥ ts to any
subsequent reply. J

Now we show that the timestamp is monotonically non-decreasing for the writer and the
reader processes.

I Lemma 6. In any execution ξ of the algorithm, the variable ts stored in any process is
non-negative and monotonically non-decreasing.

Proof. The lemma holds for the writer as it changes its local timestamp by incrementing
it every time it performs a write operation. The timestamp at each reader becomes equal
to the largest timestamp the reader discovers from the server replies. So it suffices to show
that in any two subsequent read from the same reader, say ρ1, ρ2 s.t. ρ1 → ρ2, then ρ2
returns a ts′ that is bigger or equal to the timestamp ts returned by ρ1. This can be easily
shown by the fact that ρ2 attaches the maximum timestamp discovered by the reader before
the execution of ρ2. Say this is ts discovered during ρ1. By Lemma 5 any server that will
receive the message from ρ2 will reply with a timestamp tss ≥ ts. So ρ2 will discover a
maximum timestamp ts′ ≥ ts. If ts′ = ts then the predicate will hold for α = 1 for ρ2 and
thus it stores ts′ = ts. If ts′ > ts then ρ2 stores either ts′ or ts′ − 1. In either case it stores
a timestamp greater or equal to ts and the lemma follows. J

Now we can show that if a read operation succeeds a write operation, then it returns a
value at least as recent as the one written.

A. Fernández Anta, N.Nicolaou and A. Popa 11

I Lemma 7. In any execution ξ of the algorithm, if a read ρ from r1 succeeds a write
operation ω that writes timestamp ts from the writer w , i.e. ω → ρ, and returns a timestamp
ts′, then ts′ ≥ ts.

Proof. According to the algorithm, the write operation ω communicates with a set of |Sw| =
|S| − f servers before completing. Let |S1| = |S| − f be the number of servers that replied
to the read operation ρ. The intersection of the two sets is |Sw ∩ S1| ≥ |S| − 2f and since
f < |S|/2 there exists at least a single server s that replied to both operations. Each server
s ∈ Sw ∩ S1 replies to ω before replying to ρ. Thus, by Lemma 5 and since s receives the
message from ω before replying to any of the two operations, then it replies to ρ with a
timestamp tss ≥ ts. Thus there are two cases to investigate on the timestamp: (1) tss > ts,
and (2) tss = ts.

Case 1: In the case where tss > ts, ρ will observe a maximum timestamp maxTS ≥ tss.
Since ρ returns either ts′ = maxTS of ts′ = maxTS − 1, then ts′ ≥ tss − 1. Thus, ts′ ≥ ts
as desired.

Case 2: In this case all the servers in Sw ∩ S1 reply with a timestamp tss = ts. The read
ρ may observe a maximum timestamp maxTS ≥ tss. If maxTS > tss, then, with similar
reasoning as in Case 1, we can show that ρ returns ts′ ≥ ts. So it remains to investigate the
case where maxTS = tss = ts. In this case, at least |Sw ∩ S1| = |S| − 2f servers replied
with maxTS to ρ. Also for each s ∈ Sw ∩ S1, s included both the writer identifier w and
r1 before replying to ω and ρ2 respectively. So s replied with a size at least s.views ≥ 2 to
ρ2. Thus, given that |R| ≥ 2, the predicate holds for α = 2 and the set Sw ∩ S1 for ρ, and
hence it returns a timestamp ts′ = ts. And the lemma follows. J

So now it remains to show that in two succeeding read operations, the latest operation
returns a value that is the same or greater than the value returned by the first read. More
formally:

I Lemma 8. In any execution ξ of the algorithm, if ρ1 and ρ2 are two read operations such
that ρ1 → ρ2, and ρ1 returns ts1, then ρ2 returns ts2 ≥ ts1.

Proof. Let the two operations ρ1 and ρ2 be executed from the same process, say r1. As
explained in Lemma 6, ρ2 will discover a maximum timestamp maxTS ≥ ts1. If maxTS >
ts1, then ρ2 returns either ts2 = maxTS or ts2 = maxTS − 1, and thus in both cases
ts2 ≥ ts1. It remains to examine the case where maxTS = ts1. Since ρ1 → ρ2, then any
message sent during ρ2 contains timestamp ts1. By Lemma 5, every server s that receives
the message from ρ2 replies with a timestamp tss ≥ ts1. Since maxTS = ts1, then it follows
that all |S|− f servers that replied to ρ2, sent the timestamp ts1. Before each server replies
adds r1 in their seen set. So they include a views ≥ 1 in their messages. Thus, the predicate
holds for ρ2 for α = 1 and returns ts2 = maxTS = ts1.

For the rest of the proof we assume that the read operations are invoked from two different
processes r1 and r2 respectively. Let maxTS1 be the maximum timestamp discovered by
ts1. We have two cases to consider: (1) ρ1 returns ts1 = maxTS1 − 1, or (2) ρ1 returns
ts1 = maxTS1.

Case 1: In this case ρ1 returns ts1 = maxTS1 − 1. It follows that there is a server s
that replied to ρ1 with a timestamp maxTS1. This means that the writer invoked the
write operation that tries to write a value with timestamp maxTS1. Since the single writer
invokes a single operation at a time (by well-formedness), it must be the case that the

12 Making “Fast” Atomic Operations Computationally Tractable

writer completed writing timestamp maxTS1 − 1 before the completion of ρ1. Let that
write operation be ω. Since, ρ1 → ρ2, then it must be the case that ω → ρ2 as well. So by
Lemma 7, ρ2 returns a timestamp ts2 greater or equal to the timestamp written by ω, and
thus ts2 ≥ maxTS1 − 1⇒ ts2 ≥ ts1.

Case 2: This is the case where ρ1 returns ts1 = maxTS1. So it follows that the predicate
is satisfied for ρ1, and hence ∃α ∈ [1, . . . , |R|] and a set of servers M1 such that every server
s ∈M1 replied with the maximum timestamp maxTS1 and a seen set size s.views ≥ α, and
|M1| ≥ |S|−αf . We know that ρ2 receives replies from a set of servers |S2| = |S|− f before
completing. Let M2 be the set of servers that replied to ρ2 with a maximum timestamp
maxTS2. Since |R| < |S|

f − 1, then

|M1| > |S| − (|S|
f
− 1)f ⇒ |M1| > f

Hence, S2∩M1 6= ∅ and by Lemma 5 every server s ∈ S2∩M1 replies to ρ2 with a timestamp
tss ≥ maxTS1. Therefore maxTS2 ≥ maxTS1. If maxTS2 > maxTS1, then ρ2 returns a
timestamp ts2 ≥ maxTS2 − 1⇒ ts2 ≥ maxTS1 and hence ts2 ≥ ts1.

It remains to investigate the case where maxTS2 = maxTS1. Notice that any server in
s ∈ S2 ∩M1 is also in M2. Since ρ2 may skip f servers that reply to ρ1, then |M1 ∩M2| ≥
|S| − (a + 1)f . Recall that for each server s ∈ M1 ∩M2, s replied with a size s.views ≥ a

to ρ1. Also s adds r2 in its seen set before replying to ρ2. So there are two subcases to
examine: (a) either r2 was already in the seen set of s, or (b) r2 was not a member of s.seen.

Case 2(a): If r2 was already a part of the seen set of s, then the size of the set remains the
same. It also means that r2 obtained maxTS1 from s in a previous read operation, say ρ′2
from r2. Since each process satisfies well-formdness, it must be the case that r2 completed
ρ′2 before invoking ρ2. All the messages sent by ρ2 contained maxTS1. So by Lemma 5 any
server s ∈ S2 replies to r2 with a timestamp tss = maxTS2 = maxTS1. In this case |S| − f
servers replied with maxTS2 and their seen set contains at least r2, having s.views ≥ 1.
Thus, the predicate is valid with α = 1 for ρ2 which returns ts2 = maxTS2 = maxTS1 = ts1.

Case 2(b): This case may arise if r2 is not part of the seen set of every server s ∈M1∩M2.
If r2 is part of the seen set of some server s′ ∈M1 ∩M2, then this is resolved by case 2(a).
So each server s ∈M1∩M2 inserts r2 in their seen sets before replying to ρ2. So if the size of
the set s.views = α when s replied to ρ1, s includes a size s.views ≥ a+ 1 when replying to
ρ2. Notice here that if α = |R|+ 1 for ρ1, then it means that r2 was already part of the seen
set of s when s replied to ρ1. This case is similar to 2(a). So we assume that α < |R| + 1,
in which case α+ 1 ≤ |R|+ 1. Since every server s ∈M1 ∩M2 replies with s.views ≥ α+ 1
to ρ2 and since |M1 ∩M2| ≥ |S| − (α + 1)f , then the predicate holds for α + 1 ≤ |R| + 1
and the set MS = M1 ∩M2 for ρ2, and thus ρ2 returns ts2 = maxTS2 = maxTS1 = ts1 in
this case as well. And this completes our proof. J

6 A Linear Algorithm for the Predicate and Complexity of ccFast

Table 1 presents the comparison of the complexities of ccFast with the complexities of both
algorithms ABD and Fast.
Communication Complexity. The communication complexity of ccFast is identical to
the communication complexity of Fast: both read and write operations terminate at the
end of their first communication round trip.

A. Fernández Anta, N.Nicolaou and A. Popa 13

Message Bit Complexity. Each message sent in ccFast contains a triple with timestamp
and two values. Omitting the timestamp as discussed earlier, then the values alone result in
an upper bound of O(lg |V |) bits. Additionally, each server attaches the size of its seen set,
which may include |R| + 1 processes. The number of readers however, is bounded by |S|,
and hence the size of the seen set can be obtained with lg |S| bits. Thus, the size of each
message sent in ccFast is bounded by O(lg |V |+ lg |S|) bits.
Computation Complexity. Computation is minimal at the writer and server protocols.
The most computationally intensive procedure is the computation of the predicate during
a read operation. To analyze the computation complexity of ccFast we design and analyze
an algorithm to compute the predicate during any read operation.

Algorithm 2 Linear Algorithm for Predicate Computation.
1: function isValidPredicate(srvAck,maxTS)
2: buckets← Array[1 . . . |R|+ 1], initially [0, . . . , 0]
3: for all s ∈ srvAck do
4: if s.ts == maxTS then
5: buckets[s.views] + +
6: end if
7: end for
8: for α = |R|+ 1 to 2 do
9: if buckets[α] ≥ (|S| − αf) then
10: return TRUE
11: else
12: buckets[α− 1]← buckets[α− 1] + buckets[α]
13: end if
14: end for
15: if buckets[1] == (|S| − f) then
16: return TRUE
17: end if
18: return FALSE
19: end function

Algorithm 2 presents the formal specification of the algorithm. Briefly, we assume that
the input of the algorithm is a set srvAck and a value maxTS which indicate the servers
that reply to a read operation and the maximum timestamp discovered among the replies.
The algorithm uses a set of |R| + 1 “buckets” each of which is initialized to 0. Running
through the set of replies, srvAck, a bucket k is incremented whenever a server replied with
the maximum timestamp and reports that this timestamp is seen by k processes (Lines 3-7).
At the end of the parsing of the srvAck set, each bucket k holds how many servers reported
the maximum timestamp and they sent this timestamp to k processes. Once we accumulate
this information we check if the number of servers collected in a bucket k are more than
|S| − kf . If they are, the procedure terminates returning TRUE; else the number of servers
in bucket k is added to the number of servers of bucket k− 1 and we repeat the check of the
condition (Lines 8-14). At this point the number kept at bucket k − 1 indicates the total
number of servers that reported that their timestamp was seen by more or equal to k − 1
processes. This procedure continues until the above condition is satisfied or we reach the
smallest bucket. If none of the buckets satisfies the condition the procedure returns FALSE.

I Theorem 9. Algorithm 2 implements the predicate used in every read operation in al-

14 Making “Fast” Atomic Operations Computationally Tractable

gorithm ccFast.

Proof. To show that Algorithm 2 correctly implements the predicate used by the read
operations in ccFast, we need to show that it returns TRUE whenever the predicate holds
and returns FALSE otherwise. Recall that the predicate is the following:

∃α ∈ [1, |R|+ 1] s.t. MS = {s : (s,m) ∈ maxAck ∧ m.views ≥ α} and |MS| ≥ |S|−αf

According to our implementation we have a bucket for each α. For each α the predicate
demands that we collect all the servers that replied with maxTS and with views ≥ α

(set MS). Then we check if these servers are more than |S| − αf . Let Si = {s : s ∈
srvAck ∧ s.ts = maxTS ∧ s.views = i}, for 1 ≤ i ≤ |R| + 1, be the set of servers who
replied with views = i. Since each server includes a single views number, notice that for
any i, j ∈ [1, |R|+ 1], Si ∩ Sj = ∅.

It is easy to see that initially each bucket k, for 1 ≤ k ≤ |R| + 1, holds the number of
servers with exactly k views, and hence bucket[k] = |Sk|. Notice that the last bucket |R|+ 1
collects all the servers that replied to all possible processes (including the writer). Thus, no
server may reply with views > |R|+1. So, if the predicate is valid for α = |R|+1, it follows
that MS = S|R|+1, and hence |S|R|+1| ≥ |S| − (|R|+ 1)f . Since bucket[|R|+ 1] = |S|R|+1|,
then bucket[|R|+ 1] ≥ |S| − (|R|+ 1)f and the condition of Algorithm 2 also holds. Thus,
the algorithm returns TRUE in this case.

It remains to investigate any case where α < |R| + 1. Notice that the MS set in the
predicate includes all the servers that replied with views ≥ α. Thus, for any α < |R|+ 1,

MS =
⋃

α≤i≤|R|+1

Si

Since no two sets Si and Sj intersect, then

|MS| =
∑

α≤i≤|R|+1

|Si|

When a bucket k < |R|+ 1 is investigated the value of the bucket becomes

bucket[k] =
∑

k≤i≤|R|+1

bucket[i]

where bucket[i] = |Si|, the initial value of the bucket. Thus, the above summation can be
written as

bucket[k] =
∑

k≤i≤|R|+1

|Si|

Therefore, bucket[k] = |MS|, whenever k = α. Hence, if |MS| ≥ |S|−αf in the predicate it
must be the case that bucket[α] ≥ |S|−αf in the algorithm. It follows that if the predicate is
valid the algorithm returns TRUE. Similarly, if the condition does not hold for the predicate
it does not hold for the algorithm either. If there is no α to satisfy the predicate then there
is no k to satisfy the condition in the algorithm. Thus, the algorithm in this case returns
FALSE, completing the proof. J

Finally we can analyze the complexity of Algorithm 2 which in turn specifies the com-
putational complexity of the ccFast. Algorithm 2 traverses once the set srvAck and once
the array of |R|+ 1 buckets. Since, the set srvAck may contain at most |S| servers, and |R|
is bounded by |S|, then the complexity of the algorithm is:

A. Fernández Anta, N.Nicolaou and A. Popa 15

I Theorem 10. Algorithm 2 takes O(|S|) time.

This shows that we can compute the predicate of algorithm ccFast in linear time with
respect to the number of servers in the system. This is a huge improvement over the time
required by the Fast algorithm, and matches the computational efficiency of the two round
ABD algorithm. This result demonstrates that fastness does not necessarily has to sacrifice
computation efficiency.

7 Conclusions

In this paper we questioned the overall complexity of algorithms that implement atomic
SWMR R/W registers in the asynchronous, message-passing environment where processes
are prone to crashes. Communication used to be the prominent operation efficiency metric
for such implementations. We pick the best known (in terms of communication) algorithm
that implements an atomic SWMR R/W register, Fast, that allows both reads and writes
to terminate in just a single communication round. We show that the predicate utilized
by the Fast to achieve such performance is hard to be computed, and hence the problem
is not tractable. Next we present a new predicate that provides the following properties:
(i) can be computed in polynomial time, (ii) allows operations to complete in a single
communication round, and (iii) allows algorithm ccFast to preserve atomicity. A rigorous
proof of the correctness of the algorithm is presented. Finally we conclude with a linear time
algorithm to compute the newly proposed predicate. We believe that the new results redefine
the term fast in atomic register implementations as operation performance accounts of all,
communication, computation, and message bit complexity metrics. It is yet to be determined
if the new operation efficiency is optimal or can be further improved.

References
1 Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing memory robustly in message

passing systems. Journal of the ACM, 42(1):124–142, 1996.

2 Partha Dutta, Rachid Guerraoui, Ron R. Levy, and Arindam Chakraborty. How fast can
a distributed atomic read be? In Proceedings of the 23rd ACM symposium on Principles
of Distributed Computing (PODC), pages 236–245, 2004.

3 Burkhard Englert, Chryssis Georgiou, Peter M. Musial, Nicolas Nicolaou, and Alexander A.
Shvartsman. On the efficiency of atomic multi-reader, multi-writer distributed memory. In
Proceedings 13th International Conference On Principle Of DIstributed Systems (OPODIS
09), pages 240–254, 2009.

4 Chryssis Georgiou, Nicolas Nicolaou, Alexander Russel, and Alexander A. Shvartsman.
Towards feasible implementations of low-latency multi-writer atomic registers. In 10th
Annual IEEE International Symposium on Network Computing and Applications, August
2011.

5 Chryssis Georgiou, Nicolas C. Nicolaou, and Alexander A. Shvartsman. On the robustness
of (semi) fast quorum-based implementations of atomic shared memory. In DISC ’08:
Proceedings of the 22nd international symposium on Distributed Computing, pages 289–
304, Berlin, Heidelberg, 2008. Springer-Verlag.

6 Chryssis Georgiou, Nicolas C. Nicolaou, and Alexander A. Shvartsman. Fault-tolerant
semifast implementations of atomic read/write registers. Journal of Parallel and Distributed
Computing, 69(1):62–79, 2009.

16 Making “Fast” Atomic Operations Computationally Tractable

7 Maurice P. Herlihy and Jeannette M. Wing. Linearizability: a correctness condition for con-
current objects. ACM Transactions on Programming Languages and Systems (TOPLAS),
12(3):463–492, 1990.

8 Leslie Lamport. How to make a multiprocessor computer that correctly executes multipro-
cess progranm. IEEE Transactions on Computers, 28(9):690–691, 1979.

9 Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, 1996.

10 Nancy A. Lynch and Alexander A. Shvartsman. Robust emulation of shared memory using
dynamic quorum-acknowledged broadcasts. In Proceedings of Symposium on Fault-Tolerant
Computing, pages 272–281, 1997.

11 Nancy A. Lynch and Mark Tuttle. An introduction to input/output automata. CWI-
Quarterly, pages 219–246, 1989.

12 Eduardo C. Xavier. A note on a maximum k-subset intersection problem. Information
Processing Letters, 112(12):471 – 472, 2012.

	Introduction
	Model
	Fastness and its Implications in Atomic Memory Implementations
	Formulation and Hardness of the Predicate in Fast
	Algorithm ccFast: Refining ``Fastness'' for Atomic Reads
	Algorithm Correctness

	A Linear Algorithm for the Predicate and Complexity of ccFast
	Conclusions

