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Abstract. In this paper we consider a two-node setting with a sender
transmitting packets to a receiver over a wireless channel. Unfortunately,
the channel can be jammed, thus corrupting the packet that is being
transmitted at the time. The sender has a specific amount of data that
needs to be sent to the receiver and its objective is to complete the trans-
mission of the data as quickly as possible in the presence of jamming.

We assume that the jamming is controlled by a constrained adversary.
In particular, the adversary’s power is constrained by two parameters, ρ
and σ. Intuitively, ρ represents the rate at which the adversary can jam
the channel, and σ the length of the largest bursts of jams it can cause.
This definition corresponds to the translation of the Adversarial Queu-
ing Theory (AQT) constrains, typically defined for packet injections in
similar settings, to channel jamming.

We propose deterministic scheduling algorithms that decide the
lengths of the packets to be sent by the sender in order to minimize the
transmission time. We first assume all packets being of the same length
(uniform) and characterize the corresponding optimal packet length.
Then, we show that if the packet length can be adapted, for specific
values of ρ and σ the transmission time can be improved.

Keywords: Packet scheduling · Wireless channel · Unreliable commu-
nication · Adversarial jamming · Adversarial Queueing Theory

1 Introduction

1.1 Motivation

The fast transmission of data across wireless channels under different conditions
has been an area of investigation for quite some time now [3,6,10,11,14,18,
21–25]. However, it presents several challenges depending on the model and
applications it focuses on; especially when considering channel jamming.
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In our work we look at a wireless channel between a single pair of stations
(sender and receiver), with the sender’s goal to fully transmit a specific amount
of data in the most efficient way. As efficiency measures, we look both at the
transmission time and the goodput ratio (successful transmission rate), which
are intuitively reversely proportional. Nonetheless, the communication between
the sender and the receiver is being “watched” by a malicious entity that spo-
radically introduces noise in the channel, jamming the packet that happens to
be transmitted at that time. More precisely, we model the errors in the channel
to be controlled by an adversary with constrained power; defined by parame-
ters ρ and σ. Parameter ρ represents the rate at which the adversary can jam
the channel and σ the largest size of a burst of jams that can be caused. A
packet that is jammed needs to be retransmitted; hence a feedback mechanism
is assumed that informs the sender when a packet was jammed. The sender must
transmit data of total size P . Each packet sent contains a header of fixed size h
and some payload whose size, l, is algorithm-depended. Note that this payload
counts towards the total size of P to be transmitted. For simplicity and without
loss of generality we assume that h = 1 and the time to transmit a packet is
equal to its length.

The constrained power of the adversary models a jamming entity with limited
resource of energy, e.g., military drones [13,17] or malicious mobile devices [1,2].
For the adversarial jammer in our model, we consider having a battery of capacity
σ units, where each unit can be used to cause one jam. Furthermore, in every
1/ρ time the battery is charged by one unit, e.g. with solar cells. More details
on the model we consider are given in Sect. 2.

In a previous work [4], we studied the impact of adversarial errors on packet
scheduling, focusing on the long term competitive ratio of throughput, termed
relative throughput. We explored the effect of feedback delay and proposed algo-
rithms that achieve close to optimal relative throughput under worst-case errors,
and adversarial or stochastic packet arrivals. One of the main differences with
this work is that the adversary was not constrained. Another difference is the
fact that in the current work the packet sizes are to be chosen by the sender in
order to send the desired amount of data efficiently. Furthermore, in [4], jammed
packets were not retransmitted; the objective was to route packets as fast as
possible and not strive to have each packet transmitted. In the current work,
the choice of the packet size is precisely the most critical part from the side of
the sender. Thus, we focus in devising scheduling algorithms for the decision
of packet length to be used and conduct worst-case analysis for the efficiency
measures.

1.2 Contributions

First, we introduce an AQT-based adversarial jamming model in wireless net-
works. To the best of our knowledge, this is the first work that uses such approach
to restrict the power of adversarial jamming in such networks. AQT has been
widely used for restricting packet arrivals in similar settings (see related work
below). However, no research work has considered the possibility of exploring its
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effects in the intent to “damage” a network. As already mentioned, our approach
of constrained adversarial jamming could be used to model battery-operated
malicious devices that have bounded battery capacity and specific recharging
rate. In Sect. 2 we formalize the constrained adversarial jamming model we
consider.

Then, we present the limitations it imposes on the efficiency of scheduling
policies, focusing on the transmission time Tr and the goodput G as our main
performance measures. More precisely, in Sect. 3 we show bounds on both mea-
sures, by focusing on executions with uniform packet lengths. We first compute
the quasi optimal payload size l∗ and show that the optimal transmission time
satisfies Tr ∈ [LB∗, LB∗ + l∗ + 1), where LB∗ = [P+(σ−1)l∗](l∗+1)

l∗(1−ρ(l∗−1)) and the opti-
mal goodput is G ∈ ( P

LB∗+l∗+1 , P
LB∗ ]. We also show, that for uniform packets,

as the total amount of data P grows, G is upper bounded by (1 − √
ρ)2, and in

infinity (P → ∞) the goodput grows to optimal G∗ = (1−√
ρ)2 regardless of σ.

From the above, one might wonder whether scheduling uniform packets is
in fact the overall best strategy. In Sect. 4 we show that this is not the case.
Focusing on σ = 1 we show that the optimal goodput derived from uniform
packet length transmission, G∗, can be exceeded using an adaptive algorithm;
an algorithm that decides the length of the packet to be sent next, based on
the information provided by a feedback mechanism up to that point in time. In
particular, we present the adaptive scheduling algorithm ADP-1 that achieves
goodput G = 1− ρ

2

(
1 +

√
1 + 8

ρ

)
, which is greater than G∗ for ρ < 1

2 (7−3
√

5).
Then, using a parameterized version of ADP-1 and performing case analysis we
show its superiority over the uniform packet strategy for 1/ρ > 4. Specifically,
for 1/ρ > 4 the algorithm achieves greater goodput than G∗.

1.3 Related Work

Adversarial queueing has been used in wireless networks as a methodology
for studying their stability under worst case scenarios, removing the stochas-
tic assumptions usually made for the generation of traffic. It concerns the arrival
process of packets in the system and it has been introduced by Borodin et al. [7]
as a well defined theoretical model since 2001. It has been further studied by
Andrews et al. [3] who emphasized the notion of universal stability in such
adversarial settings. A variety of works has then followed, using AQT in differ-
ent network settings, such as on multiple access channels [10,11] and routing in
communication networks [8,9]. We associate our constrained type of adversarial
channel jams with the AQT model for the arrival process of packets in the fol-
lowing way. Classical AQT considers a window adversary that accounts packets
being injected within a time window w in such a way that they give a total load
of at most wr at each edge of the paths they need to follow, where w ≥ 1 and
r ≤ 1. In our channel jams, for every window of duration 1/ρ, there is exactly
one new error token available for the adversary to use. In a long execution, con-
sidering for example a time interval T > 1/ρ, there will be up to Tρ new error
tokens available to the adversary.
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As stated already, several studies have been done on throughput maxi-
mization as well as the effects of jamming in wireless channels. For example,
Gummandi et al. [16] consider radio frequency interference on 802.11 networks
and show that such networks are surprisingly vulnerable. As a method to with-
stand these vulnerabilities they propose and analyze a channel hopping design.
Tsibonis et al. [24] studied the case of scheduling transmissions to multiple users
over a wireless channel with time-varying connectivity and proposed an algo-
rithm that focuses on the weighted sum of channel throughputs, considering
saturated packet queues. Thuente et al. [23] studied the effects of different jam-
ming techniques in wireless networks and the trade-off with their energy effi-
ciency. Their study includes from trivial/continuous to periodic and intelligent
jamming (taking into consideration the size of packets being transmitted). On a
different flavor, Awerbuch et al. [5] design a MAC protocol for single-hop wireless
networks that is robust against adaptive adversarial jamming and requires only
limited knowledge about the adversary (an estimate of the number of nodes, n,
and an approximation of a time threshold T ). One of the differences with our
work is that the adversary they consider is allowed to jam (1− ε)-fraction of the
time steps. On a later work [21], Richa et al. explored the design of a robust
medium access protocol that takes into consideration the signal to interference
plus noise ratio (SINR) at the receiver end. In [22] they extended their work
to the case of multiple co-existing networks; they proposed a randomized MAC
protocol which guarantees fairness between the different networks and efficient
use of the bandwidth. Gilbert et al. [15] worked on a theoretical analysis of the
damage that can be introduced by a tiny malicious entity having limited power
in the sense that it can only broadcast up to β times. Our model can be viewed
as a generalization of this restriction, by allowing recharging. What is more,
Pelechrinis et al. [18] present a detailed survey of the Denial of Service attacks
in wireless networks. They present the various techniques used to achieve mali-
cious behaviors and describe methodologies for their detection as well as for the
network’s protection from the jamming attacks. Finally, Dolev et al. [12] present
a survey of several existing results in adversarial interference environments in
the unlicensed bands of the radio spectrum, discussing their vulnerability. How-
ever, none of the models studied considers an AQT modeling of the power of the
adversarial entity.

As mentioned in Sect. 1.1, our adversarial jammer has limited sources of
energy and can be used to model, for example, military drones or mobile jam-
mers. Drones or Unmanned Aerial Vehicles (UAV) are at the peak of their
development. As an upcoming technology that is rapidly improving, it has
already attracted the colossi of industry, like Google or Amazon, to invest in
UAV research and development, creating even commercial models. There have
already been a few research works [13,17] but the area is still being studied;
the work in [13] focuses on UAV’s risk analysis and the work in [17] focuses
in analyzing cellular network coverage using UAV’s and software defined radio.
Regarding mobile jammers, in the recent years, many companies have made
available battery-operated 3G/4G, WiFi or GPS mobile jammers (e.g., [1,2]);
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this market can only increase, as wireless communication is becoming the dom-
inating communication technology.

2 Model

2.1 Network Setting

We consider a setting of a sending station (sender) that transmits packets to a
receiving station (receiver) over an unreliable wireless channel. The sender has
some initial data of size P to be transmitted, and follows some online schedul-
ing [19,20] in order to decide the lengths of the packets to be sent in the trans-
mission. The decisions need to be made during the course of the execution,
taking into consideration (or not) the channel jams. Each packet p consists of
a header of a fixed predefined size h and a payload of length l chosen by the
algorithm. The payload represents the useful data to be sent across the channel
and is to be chosen by the sender. The total length of the packet is then denoted
by p.len = h + l. Note that the total payload from all the packets received suc-
cessfully by the receiver in the execution must sum up to P . For simplicity and
without loss of generality we use h = 1 throughout our analysis, and hence
p.len = l + 1. (Note that l needs not be an integer.) Furthermore, we consider
constant bit rate for the channel, which means that the transmission time of
each packet is proportional to its length (i.e., a packet of size l + 1 takes l + 1
time units to be transmitted in full).

2.2 Packet Failures

We model the unavailability of the channel to be controlled by the adversary
(σ, ρ)-A, which is defined by its two “restrictive” parameters, ρ ∈ [0, 1] and
σ ≥ 1 as follows. The adversary has a token bucket of size σ where it stores
“error tokens” and is initially full. From the beginning of the execution and
up to a time t, within interval T = [0, t], there will be �ρT 	 such error tokens
created, where ρ is the rate at which they become available to the adversary.
In other words, a new error token becomes available at times 1/ρ, 2/ρ, . . .. Note
that the values of the adversary parameters are given to it (are not chosen by
it) and it can only use them in a “smart” way in order to control the packet
jams in the channel. If there is at least one token in the bucket, the adversary
can introduce an error in the channel and jam the current packet, consuming
one token. If the token bucket if full (i.e., there are already σ error tokens in
the bucket) and a new token arrives, then one token is lost (this models the fact
that a fully charged battery cannot be further charged). As a worst case analysis,
we consider that the adversary jams some bit in the header of the packets in
order to ensure their destruction. Therefore, adversary (σ, ρ)-A defines the error
pattern as a collection of jamming events on the channel, jamming the packet
that is being transmitted in that instant.
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2.3 Efficiency Measure

For the efficiency of a scheduling algorithm, we look at the total transmission
time, Tr ; that is the time from the beginning of an execution to the moment
that the complete payload P has been successfully received. We also look at the
goodput rate, G; that is the ratio of the total amount of payload successfully
transmitted over time, despite the jams in the channel. Note that the goodput
rate will eventually be maximized in the long-run, assuming infinite amount of
data P . Note also, that in most of our analysis we avoid using floors and ceilings
in order to keep the readability of our results as simple as possible for the reader.
Nonetheless, this does not affect the correctness of our results since when being
applied on large enough time intervals and data, the “losses” become negligible.

2.4 Feedback Mechanism

As for the feedback mechanism, instantaneous feedback to the sender about a
packet being received is being considered, as in [4]. We also assume that the noti-
fication packets cannot be jammed by the errors in the channel because of their
relatively small size. In particular, we consider notification/acknowledgement
messages sent for every packet that is received successfully. If such a message is
not received by the sender, then it considers the packet to be jammed.

3 Uniform Packet Length

In this section we explore the case in which all packets are of the same length.
Nonetheless, we first make the following observation, which bounds the error
availability rates used, being such that they permit some data transmission (this
holds also for non-uniform packet lengths).

Observation 1. Let c be the smallest packet size used by an algorithm (i.e.,
∀p, p.len ≥ c). For any error rate ρ ≥ 1/c, no goodput larger than zero can be
achieved.

Proof. If the error rate is ρ ≥ 1/c, a new error token arrives during the trans-
mission of any packet (recall that packets are of size at least c). Hence, there are
error tokens in the bucket at all times for the adversary to corrupt all packets
being transmitted. Using an error token every c time, is sufficient to keep the
goodput at zero. ��

From this observation, it can be derived that algorithms that only use packets
of length p.len ≥ 1/ρ are not interesting. In particular, since in this section we
consider an algorithm that systematically sends packets of the same length, we
assume that the packets used satisfy p.len < 1/ρ.

The main goal for the algorithms to be designed is to minimize the trans-
mission time needed to successfully transmit the total amount of data P to the
receiver. Knowing both adversarial parameters, ρ and σ, and considering uniform
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packets of size p.len = l + 1 < 1/ρ, we can find the quasi optimal value for the
length of the payload l in each packet that minimizes the transmission time. For
simplicity, we will assume that the total length of the data to be transmitted P
is a multiple of the payload length l. (For large values of P the error introduced
by this assumption is negligible.) Then, the objective is that P/l packets arrive
successfully at the receiver.

Let us now derive a lower bound on the transmission time that can be achieved
using uniform packets. We denote with Tr(l) the transmission time with packets
of uniform payload l. Let r be the number of packets jammed and retransmitted
by the sender. Then,

Tr(l) = (P/l + r)(l + 1). (1)

Observe that the last packet transmitted was correctly received, since other-
wise the data would have been completely transmitted by time Tr(l) − (l + 1),
which contradicts the fact that Tr(l) is the transmission time. Hence, the number
of packets jammed and retransmitted is upper bounded as

r ≤ (Tr(l) − (l + 1))ρ� − 1 + σ, (2)

where we apply the fact that the last error used by the adversary must have
been available before time Tr(l) − (l + 1). We claim that the number of packets
jammed by the adversary and retransmitted is in fact equal to the bound of
Eq. 2. Otherwise, the adversary could have jammed the last packet sent (at time
Tr(l) − (l + 1)), achieving a longer transmission time. Hence,

r = (Tr(l) − (l + 1))ρ� − 1 + σ. (3)

Moreover, since the adversary could not jam the last packet sent, it must
also hold that r + 1 ≥ Tr(l)ρ + σ = (P/l + r)(l + 1)ρ + σ, from which we can
bound the value of r as

r ≥ Pρ(l + 1) + (σ − 1)l
l − lρ(l + 1)

. (4)

Let us define the lower bound of the transmission time when packets of
uniform payload l are used, as function LB(l). Then,

Lemma 1. Using uniform packets of payload l, the lower bound of the trans-
mission time is

Tr(l) ≥ LB(l) =
P + (σ − 1)l

l(1 − ρ(l + 1))
(l + 1).

Proof. Replacing the lower bound of r (Eq. 4) in Eq. 1 we have

Tr(l) ≥
(

P

l
+

Pρ(l + 1) + (σ − 1)l
l − lρ(l + 1)

)
(l + 1) =

P + (σ − 1)l
l(1 − ρ(l + 1))

(l + 1),

which when combined with the definition of LB(l), completes the proof. ��
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Using Calculus, we can find the payload length l∗ that minimizes LB(l),
which yields the following theorem.

Theorem 1. Using uniform packets the transmission time is lower bounded as

Tr ≥ LB(l∗) =
P + (σ − 1)l∗

l∗(1 − ρ(l∗ + 1))
(l∗ + 1)

and the goodput is upper bounded as

G ≤ P

LB(l∗)
=

Pl∗(1 − ρ(l∗ + 1))
(P + (σ − 1)l∗)(l∗ + 1)

,

where

l∗ =

√
P (Pρ + (σ − 1)(1 − ρ)) − Pρ

Pρ + σ − 1
.

Obviously, when P tends to ∞, so does the transmission time Tr . However,
we can derive in this case an upper bound on the goodput as follows.

Corollary 1. Using uniform packets, the goodput is upper bounded as G ≤ (1−√
ρ)2, and in the limit as the value of P grows,

G∗ = lim
P→∞

G = (1 − √
ρ)2

Proof. Using Calculus it can be shown that the upper bound of G obtained in
Theorem 1 grows with P . Observe that lim

P→∞
G = l∗(1 − ρ(l∗ + 1))/(l∗ + 1) and

lim
P→∞

l∗ = (
√

ρ − ρ)/ρ = 1/
√

ρ − 1. Replacing the latter in the former the claims

follow. ��
We now show a corresponding upper bound on the transmission time. We

start by combining Eqs. 1 and 3 as follows:

r = (Tr(l) − (l + 1))ρ� − 1 + σ

< (Tr(l) − (l + 1))ρ + σ

= ((P/l + r)(l + 1) − (l + 1))ρ + σ

= (P/l + r)(l + 1)ρ + σ − (l + 1)ρ.

This allows us to find an upper bound of r as

r <
Pρ(l + 1) + (σ − (l + 1)ρ)l

l − lρ(l + 1)
. (5)

Let us now define the upper bound of the transmission time when packets of
payload l are used, as function UB(l). Then,

Lemma 2. Using uniform packets of payload l, the upper bound of the trans-
mission time is

Tr(l) < UB(l) =
P + (σ − (l + 1)ρ)l

l(1 − ρ(l + 1))
(l + 1).
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Proof. Replacing the upper bound of r (Eq. 5) in Eq. 1 we have

Tr(l) <

(
P

l
+

Pρ(l + 1) + (σ − (l + 1)ρ)l
l − lρ(l + 1)

)
(l+1) =

P + (σ − (l + 1)ρ)l
l(1 − ρ(l + 1))

(l+1),

which when combined with the definition of UB(l), completes the proof. ��
From Observation 1, ρ < 1/(l+1) must hold. Then, (l+1)ρ < 1 and the bound

obtained in the above lemma is strictly bigger than the lower bound presented
in Lemma 1, as expected. In fact, the gap between bounds can be obtained as
shown in the following lemma.

Lemma 3. Using uniform packets of payload l, the transmission time satisfies
Tr(l) ∈ [LB(l), LB(l) + l + 1).

Proof. Recall that the lower bound LB(l) is obtained in Lemma 1. Subtracting
this expression from the upper bound UB(l) presented in Lemma 2, we have

UB(l) − LB(l) =
P + (σ − (l + 1)ρ)l

l(1 − ρ(l + 1))
(l + 1) − P + (σ − 1)l

l(1 − ρ(l + 1))
(l + 1)

=
l(1 − ρ(l + 1))
l(1 − ρ(l + 1))

(l + 1) = l + 1.

From the above and the fact that Tr(l) < UB(l) the claim follows. ��
Corollary 2. Using uniform packets of payload l, Tr(l) is the only multiple of
l + 1 that falls in the interval [LB(l), LB(l) + l + 1).

Finally, combining Lemma3 with Theorem 1 we derive the following theorem.

Theorem 2. Consider l∗ as defined in Theorem1. Then

– the transmission time Tr(l∗) observed is less that l∗ + 1 (one packet) longer
that the optimal. I.e., Tr(l∗) < Tr + l∗ + 1.

– the goodput G(l∗) converges to the optimal goodput G as P grows. Additionally,
when P goes to infinity the goodput matches the optimal G∗, i.e. lim

P→∞
G(l∗) =

lim
P→∞

G = (1 − √
ρ)2.

Proof. The first claim follow directly from Lemma 3, since the value of l∗ is the
one that minimizes LB(l). For the second, recall that G(l∗) = P

Tr(l∗) . Hence,
observing again Lemma 3 we get that

G(l∗) >
P

LB(l∗) + l∗ + 1
=

1
LB(l∗)

P + l∗+1
P

.

As P grows l∗+1
P tends to 0, making G(l∗) converge to P/LB(l∗) which is an

upper bound on the optimal goodput. Finally, as shown in Corollary 1, when P
tends to infinity, P/LB(l∗) tends to (1 − √

ρ)2, which completes the proof. ��
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4 Adaptive Packet Length

As we have shown in the previous section, if all packets have the same size, more
precisely size l∗ + 1, then there is an upper bound on the achievable goodput
G∗ = (1−√

ρ)2. In this section, focusing on the case σ = 1, we lift the restriction
on uniform packet length and consider an algorithm that adapts the packet
length it uses as a function of the observed jams. We show that by using this
approach it is possible to achieve a goodput greater than (1 − √

ρ)2, under the
restriction of ρ < 1/4.

We divide the execution into consecutive periods of length 1/ρ. In particular,
the ith period, i = 1, 2, . . ., spans the time interval Ii =

[
i−1
ρ , i

ρ

)
. Note that since

error tokens arrive at time instants 1/ρ, 2/ρ, . . . and σ = 1, at most one packet
can be jammed by the adversary in each period. For simplicity, and since we
focus on periods of fixed length 1/ρ, we will use the useful payload sent in the
period as one of the goodness metrics used, denoted UP. Observe that UP = G/ρ
and therefore, the upper bound on the useful payload that can be achieved with
uniform packets is UP∗ = (1 − √

ρ)2/ρ.

4.1 Algorithm ADP-1 for ρ < 1
2
(7 − 3

√
5)

We start by proposing the following algorithm, to be used for small values of ρ
(and σ = 1).

Algorithm ADP-1 Description: Each period starts by scheduling packets of
decreasing length pi.len = Z − i for i = 0, 1, 2, 3 . . .. If a packet pj is jammed
during the period, this transmission sequence is stopped, and after pj , a
single more packet is scheduled by the algorithm whose length spans the
rest of the period.

We will now show that for ρ small enough, we can specify the parameter Z
such that the useful payload achieved in each period is at least UPu.

Theorem 3. Adaptive algorithm ADP-1, with Z = 1
2

(√
1 + 8

ρ − 1
)
, achieves

goodput G = 1 − ρ
2

(
1 +

√
1 + 8

ρ

)
. This value is larger than the upper bound for

the uniform case if ρ < 1
2 (7 − 3

√
5) ≈ 0.1459.

Proof. There are two cases to be considered in a period:
(a) If the adversary jams a packet pj , the useless data sent in the period adds

to Z + 1. This number comes from the j headers of the packets sent before pj ,
plus the length pj.len = Z − j of the packet jammed, plus the header of the last
packet sent in the period (which cannot be jammed). Hence, in this case, the
useful payload of the period is 1/ρ − (Z + 1).

Otherwise, (b) if no packet is jammed, the useless data sent in the period
correspond only to the headers of the packets sent. Then, if the last packet sent
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in the interval is pk, the useless data is k + 1, and the corresponding useful
payload is 1/ρ − (k + 1). The value Z is chosen so that the total length of the
packets sent in this case is equal the length of the interval. From this property,∑k

i=0 pi.len = 1
ρ , the value of Z must satisfy Z(k + 1) − k(k+1)

2 = 1
ρ and hence

Z =
k

2
+

1
ρ(k + 1)

. (6)

In a given period the choice of whether case (a) or (b) occurs is up to the
adversary, since she can decide which packet to jam, if any. This means that the
useful payload achieved will be the minimum of the two cases, UP = min{1/ρ −
(Z + 1), 1/ρ − (k + 1)}. Observe from this Eq. 6 that the length Z of the initial
packet increases if the number of packets k decreases. Additionally, it must
hold that Z ≥ k and therefore UP is maximized when Z = k. Hence, the
optimal k is the suitable solution of the equation k = k

2 + 1
ρ(k+1) , which is

k = 1
2

(√
1 + 8

ρ − 1
)

= Z.

The useful payload achieved is then UP = 1
ρ −

(
1
2

√
1 + 8

ρ − 1
2 + 1

)
= 1

ρ −
1
2

(√
1 + 8

ρ + 1
)
, which is more that UP∗ = (1 − √

ρ)2/ρ for ρ < 1
2 (7 − 3

√
5) ≈

0.1459. The corresponding goodput is G = UP
1/ρ = 1 − ρ

2

(√
1 + 8

ρ + 1
)

. ��

Corollary 3. Adaptive algorithm ADP-1, with Z = 1
2

(√
1 + 8

ρ − 1
)

achieves

transmission time Tr = 2P

2−ρ−
√

ρ(ρ+8)
.

4.2 Exhaustive Case Study for ρ ≥ 1
2
(7 − 3

√
5)

From the above results, we see that in the case of σ = 1, instead of using packets
of uniform length l∗ +1, it is better to use an adaptive algorithm. More precisely,
we have shown that for ρ < 1

2 (7− 3
√

5), ADP-1 achieves a better useful payload
and goodput rate than the optimal uniform packet algorithm (the one that uses
packet length p.len = l∗ + 1). We now explore the case of ρ ≥ 1

2 (7 − 3
√

5). As
before, we look at periods of length 1/ρ, which means that the length of the
period is at most 2

7−3
√
5

≈ 6.85 < 7. Hence, we consider only periods of such
lengths.

In general, we are going to deal with subintervals of the period of length 1/ρ.
We will denote with T = [t, t′) an interval in the execution (subinterval of the
period) such that t is an instant at which the adversary has one error token in
the error bucket, and t′ the time instant at which the next error token becomes
available. Hence, the adversary has one error token (and only one) to be used in
T . We use |T | to denote the length of the interval, and UPT to denote the useful
payload that has been sent and correctly received by the receiver during T .

Let us first make the following observation.
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Observation 2. If there is at most one packet p of length p.len > 1 sent in an
interval T , then UPT = 0.

Proof. Since the adversary has one error token at the beginning of the interval,
it uses it to jam packet p. The rest of packets (if any) have length 1 and carry
no payload. ��

We consider now different cases depending on the length of the interval, |T |,
to be explored. We use the following algorithm for any interval T .

Algorithm ADP-1T Description: As a base case, if |T | < 2 then ADP-1T

simply sends a packet that spans the whole interval. Otherwise, let i the
integer such that |T | ∈ [i, i + 1). Then ADP-1T sends a packet p whose
length depends on i. If p is jammed, it sends a packet p′ that spans the rest
of the interval T . Otherwise, it applies recursively algorithm ADP-1T ′ to
the interval T ′ = [t + p.len, t′). Observe that |T ′| < i.

Lemma 4. If |T | < 2, then UPT = 0.

Proof. For any packet sent, the header requires 1 unit of length. Since |T | < 2,
it means that only one packet can be sent within T . Hence, UPT = 0 from
Observation 2. ��
Lemma 5. If |T | ∈ [2, 3), Algorithm ADP-1T uses uniform packets with p.len =
|T |/2 and achieves useful payload UPT = |T |

2 − 1. The packets used in such
interval are uniform.

Proof. First observe that the algorithm essentially sends two packets of length
|T |/2. This in fact achieves useful payload UPT = |T |

2 − 1, since the adversary
has only one error token to be used in T , and it jams only one packet. No matter
which one is jammed, the payload of the unjammed packet, whose length is
|T |
2 − 1, is received correctly.

We show now that this is in fact the best possible useful payload that ADP-1T

can achieve for period T . Since |T | < 3 and the header has length one, the
algorithm cannot send more than 2 packets. Consider an algorithm ALG that:

– First sends a packet p of length larger than |T |/2. Then, the adversary jams
p. Since the length of the rest of the interval is |T | − p.len < |T |/2, the useful
payload UPT < |T |

2 − 1.
– First sends a packet p of length smaller than |T |/2 (but at least 1). Then,

the adversary does not jam p. After sending p, until the end of T there is
a subinterval T ′ of length |T ′| = |T | − p.len < 2. From Lemma 4, the useful
payload of T ′ is UPT ′ = 0. Then, the useful payload of T is UPT = p.len −1 <
|T |
2 − 1.

In both cases the useful payload of ALG is smaller than the one achieved by
the algorithm proposed. Hence, the algorithm proposed gives the best possible
useful payload for an interval T , where |T | ∈ [2, 3). ��
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Lemma 6. If |T | ∈ [3, 4), Algorithm ADP-1T uses uniform packets with p.len =
|T |/2 and achieves useful payload UPT = |T |

2 − 1. The packets used in such
interval are uniform.

Proof. The proof is similar to that of the previous lemma, with a small difference.
In the case that algorithm ALG sends a packet with length p.len < |T |/2, the
adversary does not jam p and after it is received, there is a subinterval T ′ of
length |T ′| = |T |−p.len < 3 until the end of T . From Lemmas 4 and 5, the useful
payload of T ′ is upper bounded as UPT ′ ≤ |T ′|

2 − 1 = |T |−p.len

2 − 1. Then, the
useful payload of T is UPT ≤ p.len−1+ |T |−p.len

2 −1 = |T |+p.len

2 −2 < |T |+|T |/2
2 −2,

which is smaller than |T |
2 − 1 for |T | < 4. Hence, the algorithm proposed gives

the best possible useful payload for an interval T , where |T | ∈ [3, 4). ��
Lemma 7. If |T | ∈ [4, 5), Algorithm ADP-1T with p.len = (|T | + 2)/3 achieves
useful payload UPT = 2|T |−5

3 . The packets used in the whole interval are not
uniform in this case.

Proof. Let Algorithm ADP-1T send first packet p with p.len = (|T | + 2)/3.
If it is jammed, a packet p′ of length |T | − (|T | + 2)/3 is sent successfully.
Then, in this case the useful payload is UPT = |T | − (|T | + 2)/3 − 1 = 2|T |−5

3 .
Otherwise, observe that |T ′| = |T |−p.len ∈ [2, 4). Then, form Lemmas 5 and 6 the
UPT ′ = |T ′|

2 − 1 = |T |−p.len

2 − 1. Hence, UPT = p.len − 1+ |T |−p.len

2 − 1 = 2|T |−5
3 .

To prove that this is the best approach for the choice of the packet length,
consider an algorithm ALG that

– First sends a packet p of length larger than (|T | + 2)/3. Then, the adversary
jams p. Since the length of the rest of the interval is |T | − p.len < |T | − (|T | +
2)/3, the useful payload UPT < |T | − (|T | + 2)/3 = 2|T |−5

3 .
– First sends a packet p of length smaller than (|T |+2)/3, but at least 1. Then,

the adversary does not jam p. After p there is a subinterval T ′ of length
|T ′| = |T | − p.len < 4. Then, from Lemmas 4, 5, and 6, the useful payload
of T ′ is upper bounded as UPT ′ ≤ |T ′|

2 − 1 = |T |−p.len

2 − 1. Then, the useful
payload of T is UPT = p.len − 1 + |T |−p.len

2 − 1 < 2|T |−5
3 .

In both cases the useful payload is smaller than the ones achieved by the algo-
rithm proposed. Hence, the algorithm proposed with the packet length chosen,
gives the best possible useful payload in an interval T , where |T | ∈ [4, 5). ��
Lemma 8. If |T | ∈ [5, 6), Algorithm ADP-1T with p.len = (|T | + 2)/3 achieves
useful payload UPT = 2|T |−5

3 . The packets used in the whole interval are not
uniform in this case.

Proof. The proof is similar to that of Lemma 7, with some small differences. The
main difference is in the case that algorithm ALG sends a packet with length
p.len < (|T | + 2)/3. As above, the adversary will not jam p and after sending it
successfully, there will be a subinterval T ′ of length |T ′| = |T |−p.len < 5 until the
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end of T . Then, from Lemmas 4 to 7, the useful payload of T ′ is upper bounded
as UPT ′ ≤ 2|T ′|−5

3 = 2(|T |−p.len)−5
3 . Hence, the useful payload of T becomes

UPT ≤ p.len − 1 + 2(|T |−p.len)−5
3 which is smaller than 2|T |−5

3 for p.len < 3. The
latter holds, since p.len < (|T | + 2)/3 and |T | < 6. Hence again, the algorithm
proposed with the packet length chosen, gives the best possible useful payload
in an interval T , where |T | ∈ [5, 6). ��
Lemma 9. If |T | ∈ [6, 7), Algorithm ADP-1T with p.len = (|T | + 2)/3 achieves
useful payload UPT = 2|T |−5

3 . The packets used in the whole interval are not
uniform in this case either.

Proof. The proof follows the same exact logic as Lemmas 7 and 8. The only
difference is in the case that algorithm ALG sends a packet with length
p.len < (|T | + 2)/3. As above, the adversary will not jam p and after sending it
successfully, the subinterval T ′ that remains is of length |T ′| = |T | − p.len < 6.
Then, from Lemmas 4 to 8, the useful payload of T ′ is upper bounded as
UPT ′ ≤ 2|T ′|−5

3 = 2(|T |−p.len)−5
3 . Hence, the useful payload of T becomes

UPT ≤ p.len − 1 + 2(|T |−p.len)−5
3 which is smaller than 2|T |−5

3 for p.len < 3.
The latter holds, since p.len < (|T | + 2)/3 and |T | < 7. Hence, the algorithm
proposed with the packet length chosen, gives the best possible useful payload
in an interval T , where |T | ∈ [6, 7). ��

Putting all these results together, and fixing |T | = 1/ρ, we get the following
theorem.

Theorem 4. For σ = 1, ρ ≥ 1
2 (7 − 3

√
5) and 1/ρ ∈ [4, 7), adaptive algorithm

ADP-1T has goodput G = 2−5ρ
3 . This is achieved using first packet p with length

p.len = 1
3ρ + 2

3 ; the packets used are not of uniform length.

Note that for 1/ρ > 4, the goodput achieved is bigger than the upper bound of
the uniform packet approach, G > G∗, and for 1/ρ = 4 it is equal to the upper
bound, G = G∗.

5 Conclusions

In this paper we have applied Adversarial Queuing Theory (AQT), a well known
theoretical modeling tool, for the first time to restrict adversarial packet jamming
on wireless networks. We have chosen to study a constrained adversarial entity,
considering a bounded error-token capacity σ and an error-token availability rate
ρ. This model could be applied in various battery-operated malicious devices such
as drones or mobile jammers. We have first shown upper and lower bounds on
transmission time and goodput by exploring the case of uniform packet lengths.
Then, focusing on σ = 1, we have shown that an adaptive algorithm that changes
the packet length based on feedback received for jammed packets, can achieve
better goodput and transmission time. What might seem surprising is that even
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for the “simple” case of σ = 1, the analysis of the adaptive algorithm is nontrivial,
and imposes constraints also on ρ.

An intriguing open question is whether it is still possible to obtain better
efficiency than the uniform packet lengths “policy” for adaptive algorithms with
σ > 1. Considering for example σ = 2 seems to already be a challenging task.
Another interesting future direction is to investigate the case where one or both
parameters ρ and σ are not known; here one will need to monitor the history
of the observed jams in an attempt to estimate these parameters. On the other
hand, the adversary will try to “hide” the true value of these parameters, yield-
ing an interesting gameplay between the adversary and an algorithm. Another
direction to follow would be to consider in addition the channel errors due to
congestion and transmission rate.
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