
Competitive Analysis of Task Scheduling
Algorithms on a Fault-Prone Machine

and the Impact of Resource Augmentation

Antonio Fernández Anta1(B), Chryssis Georgiou2, Dariusz R. Kowalski3,
and Elli Zavou1,4

1 Institute IMDEA Networks, Madrid, Spain
antonio.fernandez@imdea.org

2 University of Cyprus, Nicosia, Cyprus
3 University of Liverpool, Liverpool, UK

4 Universidad Carlos III de Madrid, Madrid, Spain

Abstract. Reliable task execution on machines that are prone to unpre-
dictable crashes and restarts is both important and challenging, but not
much work exists on the analysis of such systems. We consider the online
version of the problem, with tasks arriving over time at a single machine
under worst-case assumptions. We analyze the fault-tolerant properties
of four popular scheduling algorithms: Longest In System (LIS), Shortest
In System (SIS), Largest Processing Time (LPT) and Shortest Process-
ing Time (SPT). We use three metrics for the evaluation and comparison
of their competitive performance, namely, completed load, pending load,
and latency. We also investigate the effect of resource augmentation in
their performance, by increasing the speed of the machine. Hence, we
compare the behavior of the algorithms for different speed intervals and
show that there is no clear winner with respect to all the three considered
metrics. While SPT is the only algorithm that achieves competitiveness
on completed load for small speed, LIS is the only one that achieves
competitiveness on latency (for large enough speed).

Keywords: Scheduling · Online algorithms · Task sizes · Failures ·
Competitive analysis · Resource augmentation

1 Introduction

The demand for processing dynamically introduced jobs that require high com-
putational power has been increasing dramatically during the last decades, and
so has the research to face the many challenges it presents. In addition, with the
presence of machine failures (and restarts), which in cloud computing is now the

This research was supported in part by Ministerio de Economı́a y Competi-
tividad grant TEC2014-55713-R, Regional Government of Madrid (CM) grant
Cloud4BigData (S2013/ICE-2894, cofunded by FSE & FEDER), and grant
FPU12/00505 from MECD.

c© Springer International Publishing Switzerland 2015
F. Pop and M. Potop-Butucaru (Eds.): ARMS-CC 2015, LNCS 9438, pp. 1–16, 2015.
DOI: 10.1007/978-3-319-28448-4 1

2 A. Fernández Anta et al.

norm instead of the exception, things get even worse. In this work, we apply speed
augmentation [2,15] (i.e., we increase the computational power of the system’s
machine) in order to overcome such failures, even in the worst possible scenario.
This is an alternative to increasing the number of processing entities, as done in
multiprocessor systems. Hence, we consider a speedup s ≥ 1, under which the
machine performs a job s times faster than the baseline execution time.

More precisely, we consider a setting with a single machine prone to crashes
and restarts that are being controlled by an adversary (modeling worst-case sce-
narios), and a scheduler that assigns injected jobs or tasks to be executed by
the machine. These tasks arrive continuously and have different computational
demands and hence size (or processing time). Specifically we assume that each
task τ has size π(τ) ∈ [πmin, πmax], where πmin and πmax are the smallest and
largest possible values, respectively, and π(τ) becomes known to the system at
the moment of τ ’s arrival. Since the scheduling decisions must be made con-
tinuously and without knowledge of the future (neither of the task injections
nor of the machine crashes and restarts), we look at the problem as an online
scheduling problem [4,5,18,20,23]. The importance of using speedup lies in this
online nature of the problem; the future failures, and the instants of arrival of
future tasks along with their sizes, are unpredictable. Thus, there is the need to
overcome this lack of information. Epstein et al. [8], specifically show the impos-
sibility of competitiveness in a simple non-preemptive scenario (see Example 2
in [8]). We evaluate the performance of the different scheduling policies (online
algorithms) under worst-case scenarios, on a machine with speedup s, which
guarantees efficient scheduling even in the worst of cases. For that, we perform
competitive analysis [21]. The four scheduling policies we consider are Longest
In System (LIS), Shortest In System (SIS), Largest Processing Time (LPT) and
Shortest Processing Time (SPT). Scheduling policies LIS and SIS are the popu-
lar FIFO and LIFO policies respectively. Graham [12] introduced the scheduling
policy LPT a long time ago, when analyzing multiprocessor scheduling. Lee
et al. [17] studied the offline problem of minimizing the sum of flow times in one
machine with a single breakdown, and gave tight worst-case error bounds on
the performance of SPT. Achieving reliable and stable computations in such an
environment withholds several challenges. One of our main goals is therefore to
confront these challenges considering the use of the smallest possible speedup.
However, our primary intention is to unfold the relationship between the effi-
ciency measures we consider for each scheduling policy, and the amount of speed
augmentation used.

Contributions. In this paper we explore the behavior of some of the most
widely used algorithms in scheduling, analyzing their fault-tolerant properties
under worst-case combination of task injection and crash/restart patterns, as
described above. The four algorithms we consider are:

(1) Longest In System (LIS): the task that has been waiting the longest is sched-
uled; i.e., it follows the FIFO (First In First Out) policy,

(2) Shortest In System (SIS): the task that has been injected the latest is sched-
uled; i.e., it follows the LIFO (Last In First Out) policy,

Competitive Analysis of Task Scheduling Algorithms 3

(3) Largest Processing Time (LPT): the task with the biggest size is sched-
uled, and

(4) Shortest Processing Time (SPT): the task with the smallest size is scheduled.

We focus on three evaluation metrics, which we regard to embody the most
important quality-of-service parameters: the completed load, which is the aggre-
gate size of all the tasks that have completed their execution successfully, the
pending load, which is the aggregate size of all the tasks that are in the queue
waiting to be completed, and the latency, which is the largest time a task spends
in the system, from the time of its arrival until it is fully executed. Latency, is
also referred to as flowtime in scheduling (e.g., [1,6]). These metrics represent
the machine’s throughput, queue size and delay respectively, all of which we
consider essential. They show how efficient the scheduling algorithms are in a
fault-prone setting from different angles: machine utilization (completed load),
buffering (pending load) and fairness (latency). The performance of an algorithm
ALG is evaluated under these three metrics by means of competitive analysis, in
which the value of the metric achieved by ALG when the machine uses speedup
s ≥ 1 is compared with the best value achieved by any algorithm X running
without speedup (s = 1) under the same pattern of task arrivals and machine
failures, at all time instants of an execution.

Table 1 summarizes the results we have obtained for the four algorithms1.
The first results we show apply to all deterministic algorithms and all work-
conserving algorithms – algorithms that do not idle while there are pending
tasks and do not break the execution of a task unless the machine crashes. We
show that, if task sizes are arbitrary, these algorithms cannot be competitive
when processors have no resource augmentation (s = 1), thus justifying the
need of the speedup. Then, for work-conserving algorithms we show the following
results: (a) When s ≥ ρ = πmax

πmin
, the completed load competitive ratio is lower

bounded by 1/ρ and the pending load competitive ratio is upper bounded by
ρ. (b) When s ≥ 1 + ρ, the completed load competitive ratio is lower bounded
by 1 and the pending load competitive ratio is upper bounded by 1 (i.e., they
are 1-competitive). Then, for specific cases of speedup less than 1 + ρ we obtain
better lower and upper bounds for the different algorithms.

However, it is clear that none of the algorithms is better than the rest. With
the exception of SPT, no algorithm is competitive in any of the three metrics
considered when s < ρ. In particular, algorithm SPT is competitive in terms of
completed load when tasks have only two possible sizes. In terms of latency, only
algorithm LIS is competitive, when s ≥ ρ, which might not be very surprising
since algorithm LIS gives priority to the tasks that have been waiting the longest
in the system. Another interesting observation is that algorithms LPT and SPT
become 1-competitive as soon as s ≥ ρ, both in terms of completed and pending
load, whereas LIS and SIS require greater speedup to achieve this.

This is the first thorough and rigorous online analysis of these popular schedul-
ing algorithms in a fault-prone setting. In some sense, our results demonstrate in
1 Most proofs of these results are omitted due to space limit. They will be available

in the full version of this paper.

4 A. Fernández Anta et al.

Table 1. General metrics comparison of ANY deterministic scheduling algorithm,
ALGD, ANY work-conserving one, ALGW , and detailed metric comparison of the
four scheduling algorithms studied in detail. Recall that s represents the speedup
of the system’s machine, πmax and πmin the largest and smallest task sizes respec-
tively, and ρ = πmax

πmin
. Note also that, by definition, 0-completed-load competitiveness

ratio equals to non-competitiveness, as opposed to the other two metrics, where non-
competitiveness corresponds to an ∞ competitiveness ratio.

Algorithm Condition Completed Load, C Pending Load, P Latency, L
ALGD s = 1, any task size 0 ∞ ∞
ALGW s = 1, any task size 0 ∞ ∞
ALGW s ≥ ρ ≥ 1

ρ
≤ρ –

s ≥ 1 + ρ ≥1 ≤1 –

LIS s < ρ, two task sizes 0 ∞ ∞
s ∈ [ρ, 1 + 1/ρ) [1

ρ
, 1
2

+ 1
2ρ

] [1+ρ
2

, ρ] (0, 1]

s ∈ [max{ρ, 1 + 1
ρ
}, 2) [1

ρ
, 1
2

+ s
2
] [1

2
+ 1

2(s−1)
, ρ] (0, 1]

s ≥ max{ρ, 2} [1, s] 1 (0, 1]

SIS s < ρ, two task sizes 0 ∞ ∞
s ∈ [ρ, 1 + 1

ρ
) 1

ρ
ρ ∞

s ∈ [1 + 1
ρ
, 1 + ρ) [1

ρ
, s
1+ρ

] [1
s

+ ρ
1+ρ

, ρ] ∞
s ≥ 1 + ρ [1, s] 1 ∞

LPT s < ρ, two task sizes 0 ∞ ∞
s ≥ ρ [1, s] 1 ∞

SPT s < ρ, two task sizes [1
2+ρ

, �(s−1)ρ�+1
�(s−1)ρ�+1+ρ

] ∞ ∞
s ≥ ρ [1, s] 1 ∞

a clear way the differences between two classes of policies: the ones that give pri-
ority based on the arrival time of the tasks in the system (LIS and SIS) and the
ones that give priority based on the required processing time of the tasks (LPT
and SPT). Observe that different algorithms scale differently with respect to the
speedup, in the sense that with the increase of the machine speed the competitive
performance of each algorithm changes in a different way.

Related Work. We relate our work to the online version of the bin packing
problem [22], where the objects to be packed are the tasks and the bins are the
time periods between two consecutive failures of the machine (i.e., alive inter-
vals). Over the years, extensive research on this problem has been done, some
of which we consider related to ours. For example, Johnson et al. [13] analyze
the worst-case performance of two simple algorithms (Best Fit and Next Fit)
for the bin packing problem, giving upper bounds on the number of bins needed
(corresponding to the completed time in our work). Epstein et al. [9] (see also
[22]) considered online bin packing with resource augmentation in the size of the
bins (corresponding to the length of alive intervals in our work). Observe that
the essential difference of the online bin packing problem with the one that we

Competitive Analysis of Task Scheduling Algorithms 5

are looking at in this work, is that in our system the bins and their sizes (cor-
responding to the machine’s alive intervals) are unknown. Boyar and Ellen [7]
have looked into a problem similar to both the online bin packing problem and
ours, considering job scheduling in the grid. The main difference with our setting
is that they consider several machines (or processors), but mainly the fact that
the arriving items are processors with limited memory capacities and there is a
fixed amount of jobs in the system that must be completed. They also use fixed
job sizes and achieve lower and upper bounds that only depend on the fraction
of such jobs in the system.

Another related problem is packet scheduling in a link. Andrews and
Zhang [3] consider online packet scheduling over a wireless channel whose rate
varies dynamically, and perform worst-case analysis regarding both the chan-
nel conditions and the packet arrivals. We can also directly relate our work to
research done on machine scheduling with availability constraints (e.g., [11,19]).
One of the most important results in that area is the necessity of online algo-
rithms in case of unexpected machine breakdowns. However, in most related
works preemptive scheduling is considered and optimality is shown only for
nearly online algorithms (need to know the time of the next job or machine
availability).

The work of Georgiou and Kowalski [10] was the one that initiated our study.
They consider a cooperative computing system of n message-passing processes
that are prone to crashes and restarts, and have to collaborate to complete
the dynamically injected tasks. For the efficiency of the system, they perform
competitive analysis looking at the maximum number of pending tasks. One
assumption they widely used was the fact that they considered only unit-length
tasks. One of their last results, shows that if tasks have different lengths, even
under slightly restricted adversarial patterns, competitiveness is not possible.
In [5] we introduced the term of speedup, representing resource augmentation,
in order to surpass the non competitiveness shown in [10] and achieve competi-
tiveness in terms of pending load. We found the threshold of necessary speedup
under which no algorithm can be competitive, and showed that is also sufficient,
proposing optimal algorithms that achieve competitiveness. More precisely, we
looked at a system of multiple machines and at least two different task costs,
i.e., sizes π ∈ [πmin, πmax]. We applied distributed scheduling and performed
worst-case competitive analysis, considering the pending load competitiveness
as our main evaluation metric. We defined ρ = πmax

πmin
and proved that if both

conditions (a) s < ρ and (b) s < 1 + γ/ρ hold for the system’s machines (γ is
some constant that depends on πmin and πmax), then no deterministic algorithm
is competitive with respect to the queue size (pending load). Additionally, we
proposed online algorithms to show that relaxing any of the two conditions is
sufficient to achieve competitiveness. In fact, [5] motivated this paper, since it
made evident the need of a thorough study of simple algorithms even under the
simplest basic model of one machine and scheduler.

In [4] we looked at a different setting, of an unreliable communication link
between two nodes, and proposed the asymptotic throughput for the performance
evaluation of scheduling algorithms. We showed that immediate feedback is

6 A. Fernández Anta et al.

necessary to achieve competitiveness and we proved upper and lower bounds
for both adversarial and stochastic packet arrivals. More precisely, we consid-
ered only two packet lengths, πmin and πmax, and showed that for adversarial
arrivals there is a tight asymptotic throughput, giving upper bound with a fixed
adversarial strategy and matching lower bound with an online algorithm we pro-
posed. We also gave an upper bound for the algorithm Shortest Length, showing
that it is not optimal.

Jurdzinski et al. [14] extended our works [4,5] presenting an optimal online
algorithm for the case of k fixed packet lengths, achieving the optimal asymptotic
throughput shown in [4]. They also showed that considering resource augmenta-
tion (specifically doubling the transmission speed) for faster transmission of the
packets, the asymptotic throughput scales. Kowalski et al. [16], inspired by [5],
proved that for speedup satisfying conditions (a) and (b) as described above
(s < min{ρ, 1 + γ/ρ}), no deterministic algorithm can be latency-competitive
or 1-completed-load-competitive, even in the case of one machine and two task
sizes. They then proposed an algorithm that achieves 1-latency-competitiveness
and 1-completed-load-competitiveness, as soon as speedup s ≥ 1 + γ/ρ.

2 Model and Definitions

Computing Setting. We consider a system of one machine prone to crashes
and restarts with a Scheduler responsible for the task assignment to the machine
following some algorithm. The clients submit jobs (or tasks) of different sizes
(processing time) to the scheduler, which in its turn assigns them to be executed
by the machine.

Tasks. Tasks are injected to the scheduler by the clients of the system, an oper-
ation which is controlled by an arrival pattern A (a sequence of task injections).
Each task τ has an arrival time a(τ) (simultaneous arrivals are totally ordered)
and a size π(τ), being the processing time it requires to be completed by a
machine running with s = 1, and is learned at arrival. We use the term π-task
to refer to a task of size π ∈ [πmin, πmax] throughout the paper. We also assume
tasks to be atomic with respect to their completion; in other words, preemption
is not allowed (tasks must be fully executed without interruptions).

Machine Failures. The crashes and restarts of the machine are controlled by
an error pattern E, which we assume is coordinated with the arrival pattern
in order to give worst-case scenarios. We consider that the task being executed
at the time of the machine’s failure is not completed, and it is therefore still
pending in the scheduler. The machine is active in the time interval [t, t∗] if it is
executing some task at time t and has not crashed by time t∗. Hence, an error
pattern E can be seen as a sequence of active intervals of the machine.

Resource Augmentation/Speedup. We also consider a form of resource aug-
mentation by speeding up the machine and the goal is to keep it as low as
possible. As mentioned earlier, we denote the speedup with s ≥ 1.

Competitive Analysis of Task Scheduling Algorithms 7

Notation. Let us denote here some notation that will be extensively used
throughout the paper. Because it is essential to keep track of injected, com-
pleted and pending tasks at each timepoint in an execution, we introduce sets
It(A), Ns

t (X,A,E) and Qs
t (X,A,E), where X is an algorithm, A and E the

arrival and error patterns respectively, t the time instant we are looking at
and s the speedup of the machine. It(A) represents the set of injected tasks
within the interval [0, t], Ns

t (X,A,E) the set of completed tasks within [0, t] and
Qs

t (X,A,E) the set of pending tasks at time instant t. Qs
t (X,A,E) contains the

tasks that were injected by time t inclusively, but not the ones completed before
and up to time t. Observe that It(A) = Ns

t (X,A,E)∪Qs
t (X,A,E) and note that

set I depends only on the arrival pattern A, while sets N and Q also depend on
the error pattern E, the algorithm run by the scheduler, X, and the speedup of
the machine, s. Note that the superscipt s is omitted in further sections of the
paper for simplicity. However, the appropriate speedup in each case is clearly
stated.

Efficiency Measures. Considering an algorithm ALG running with speedup
s under arrival and error patterns A and E, we look at the current time t and
focus on three measures; the Completed Load, which is the sum of sizes of the
completed tasks

Cs
t (ALG, A,E) =

∑

τ∈Ns
t (ALG,A,E)

π(τ),

the Pending Load, which is the sum of sizes of the pending tasks

P s
t (ALG, A,E) =

∑

τ∈Qs
t (ALG,A,E)

π(τ),

and the Latency, which is the maximum amount of time a task has spent in the
system

Ls
t (ALG, A,E) = max

{
f(τ) − a(τ), ∀τ ∈ Ns

t (ALG, A,E)
t − a(τ), ∀τ ∈ Qs

t (ALG, A,E)

}
,

where f(τ) is the time of completion of task τ . Computing the schedule (and
hence finding the algorithm) that minimizes or maximizes correspondingly the
measures Cs

t (X,A,E), P s
t (X,A,E), and Ls

t (X,A,E) offline (having the knowl-
edge of the patterns A and E), is an NP-hard problem [5].

Due to the dynamicity of the task arrivals and machine failures, we view
the scheduling of tasks as an online problem and pursue competitive analysis
using the three metrics. Note that for each metric, we consider any time t of
an execution, combinations of arrival and error patterns A and E, and any
algorithm X designed to solve the scheduling problem: An algorithm ALG run-
ning with speedup s, is considered α-completed-load-competitive if ∀t,X,A,E,
Cs

t (ALG, A,E) ≥ α · C1
t (X,A,E) + ΔC holds for some parameter ΔC that

does not depend on t,X,A or E; α is the completed-load competitive ratio of

8 A. Fernández Anta et al.

ALG, which we denote by C(ALG). Similarly, it is considered α-pending-load-
competitive if P s

t (ALG, A,E) ≤ α · P 1
t (X,A,E) + ΔP , for parameter ΔP which

does not depend on t,X,A or E. In this case, α is the pending-load competitive
ratio of ALG, which we denote by P(ALG). Finally, algorithm ALG is considered
α-latency-competitive if Ls

t (ALG, A,E) ≤ α · L1
t (X,A,E) + ΔL, where ΔL is a

parameter independent of t,X,A and E. In this case, α is the latency competi-
tive ratio of ALG, which we denote by L(ALG). Note that α, is independent of
t, X, A and E, for the three metrics accordingly.2

Both completed and pending load measures are important. Observe that they
are not complementary of one another. An algorithm may be completed-load-
competitive but not pending-load-competitive, even though the sum of sizes of
the successfully completed tasks complements the sum of sizes of the pending
ones (total load). For example, think of an online algorithm that manages to
complete successfully half of the total injected task load up to any point in any
execution. This gives a completed load competitiveness ratio C(ALG) = 1/2.
However, it is not necessarily pending-load-competitive since in an execution
with infinite task arrivals its total load (pending size) increases unboundedly and
there might exist an algorithm X that manages to keep its total pending load
constant under the same arrival and error patterns. This is further demonstrated
by our results summarized in Table 1.

3 Properties of Work-Conserving and Deterministic
Algorithms

In this section we present some general properties for all online work-conserving
and deterministic algorithms. Obviously, these properties apply to the four poli-
cies we focus on in the rest of the paper. The first results show that when there
is no speedup these types of algorithms can not be competitive in any of the
goodness metrics we use, which justifies the use of speedup in order to achieve
competitiveness.

Theorem 1. If tasks can have any size in the range [πmin, πmax] and there is
no speedup (i.e., s = 1), no work-conserving algorithm and no deterministic
algorithm is competitive with respect to the three metrics, i.e. C(ALG) = 0 and
P(ALG) = L(ALG) = ∞.

The rest of results of the section are positive and show that if the speedup
is large enough some competitiveness is achieved.

Lemma 1. No algorithm X (running without speedup) completes more tasks
than a work-conserving algorithm ALG running with speedup s ≥ ρ. Formally,
for any arrival and error patterns A and E, |Nt(ALG, A,E)| ≥ |Nt(X,A,E)|
and hence |Qt(ALG, A,E)| ≤ |Qt(X,A,E)|.
2 Parameters ΔC , ΔP , ΔL as well as α may depend on system parameters like πmin,

πmax or s, which are not considered as inputs of the problem.

Competitive Analysis of Task Scheduling Algorithms 9

Proof. We will prove that ∀t, A ∈ A and E ∈ E , |Qt(ALG, A,E)| ≤
|Qt(X,A,E)|, which implies that |Nt(ALG, A,E)| ≥ |Nt(X,A,E)|. Observe that
the claim trivially holds for t = 0. We now use induction on t to prove the general
case. Consider any time t > 0 and corresponding time t′ < t such that t′ is the
latest time instant before t that is either a failure/restart time point or a point
where ALG’s pending queue is empty. Observe here, that by the definition of t′,
the queue is never empty within interval T = (t′, t]. By the induction hypothesis,
|Qt′(ALG)| ≤ |Qt′(X)|.

Let iT be the number of tasks injected in the interval T . Since ALG is work-
conserving, it is continuously executing tasks in the interval T . Also, ALG needs
at most πmax/s ≤ πmin time to execute any task using speedup s ≥ ρ, regardless
of the task being executed. Then it holds that

|Qt(ALG)| ≤ |Qt′(ALG)| + iT −
⌊

t − t′

πmax/s

⌋
≤ |Qt′(ALG)| + iT −

⌊
t − t′

πmin

⌋
.

On the other hand, X can complete at most one task every πmin time. Hence,
|Qt(X)| ≥ |Qt′(X)| + iT −

⌊
t−t′
πmin

⌋
. As a result, we have that

|Qt(X)| − |Qt(ALG)| ≥ |Qt′(X)|+iT −
⌊

t − t′

πmin

⌋
−|Qt′(ALG)|−iT +

⌊
t − t′

πmin

⌋
≥0.

Since this holds for all times t, the claim follows. �	
The following theorem now follows directly from Lemma 1.

Theorem 2. Any work-conserving algorithm ALG running with speedup s ≥ ρ
has completed-load competitive ratio C(ALG) ≥ 1/ρ and pending-load competitive
ratio P(ALG) ≤ ρ.

Finally, increasing even more the speedup we can show that both competi-
tiveness ratios improve.

Theorem 3. Any work-conserving algorithm ALG running with speedup s ≥ 1+
ρ, has completed-load competitive ratio C(ALG) ≥ 1 and pending-load competitive
ratio P(ALG) ≤ 1.

4 Completed and Pending Load Competitiveness

In this section we present a detailed analysis of the four algorithms with respect
to the completed and pending load metrics, first for speedup s < ρ and then for
speedup s ≥ ρ.

4.1 Speedup s < ρ

Let us start with some negative results, whose proofs involve specifying the com-
binations of arrival and error patterns that force the claimed bad performances
of the algorithms. We also give some positive results for SPT, the only algorithm
that can achieve a non-zero completed-load competitiveness under some cases.

10 A. Fernández Anta et al.

Theorem 4. NONE of the three algorithms LIS, LPT and SIS is competitive
when speedup s < ρ, with respect to completed or pending load, even in the case
of only two task sizes (i.e., πmin and πmax).

Theorem 5. For speedup s < ρ, algorithm SPT cannot have a completed-load
competitive ratio more than C(SPT) ≤ �(s−1)ρ�+1

�(s−1)ρ�+1+ρ . Additionally, it is NOT
competitive with respect to the pending load, i.e., P(SPT) = ∞.

Proof. For all speedup s < ρ, let us define parameter γ to be the smallest integer
such that γπmin+πmax

s > πmax holds. This leads to γ > (s − 1)ρ and hence we
can fix γ =
(s − 1)ρ� + 1. Assuming speedup s < ρ we consider the following
combination of arrival and error patterns A and E respectively: We define time
points tk, where k = 0, 1, 2 . . . , such that t0 is the beginning of the execution
and tk = tk−1 + πmax + γπmin. At every tk time instant there are γ tasks of size
πmin injected along with one πmax-task. What is more, the crash and restarts of
the system’s machine are set at times tk + πmax and then after every πmin time
until tk+1 is reached.

By the arrival and error patterns described, every epoch; time interval
[tk, tk+1], results in the same behavior. Algorithm SPT is able to complete
only the γ tasks of size πmin, while X is able to complete all tasks that
have been injected at the beginning of the epoch. From the nature of SPT,
it schedules first the smallest tasks, and therefore the πmax ones never have the
time to be executed; a πmax-task is scheduled at the last phase of each epoch
which is of size πmin (recall s < ρ ⇒ πmin < πmax/s). Hence, at time tk,
Ctk(SPT, A,E) = kγπmin and Ctk(X,A,E) = kγπmin + kπmax.

Looking at the pending load at such points, we can easily see that
SPT’s is constantly increasing, while X is able to have pending load zero;
Ptk(SPT, A,E) = kπmax but Ptk(X,A,E) = 0. As a result, we have a max-
imum completed-load competitive ratio C(SPT) ≤ γ

γ+ρ = �(s−1)ρ�+1
�(s−1)ρ�+1+ρ and a

pending load P(SPT) = ∞. �	
We now have a positive result but only for the special case of two task sizes.

Theorem 6. If tasks can be of only two sizes (πmin and πmax), algorithm SPT
can achieve a completed-load competitive ratio C(SPT) ≥ 1

2+ρ , for any speedup
s ≥ 1. In particular, Ct(SPT) ≥ 1

2+ρCt(X) − πmax, for any time t.

Proof. Let us assume fixed arrival and error patterns A and E respectively, as
well as an algorithm X, and let us look at any time t in the execution of SPT.
Let τ be a task completed by X by time t (i.e., τ ∈ Nt(X)), where tτ is the time
τ was scheduled and f(τ) ≤ t the time it completed its execution. We associate
τ with the following tasks in Nt(SPT): (i) The same task τ . (ii) The task w
being executed by SPT at time tτ , if it was not later interrupted by a crash. Not
every task in Nt(X) is associated to some task in Nt(SPT), but we show now
that most tasks are. In fact, we show that the aggregate sizes of the tasks in
Nt(X) that are not associated with any task in Nt(SPT) is at most πmax. More
specifically, there is only one task execution of a πmax-task, namely w, by SPT

Competitive Analysis of Task Scheduling Algorithms 11

such that the πmin-tasks scheduled and completed by X concurrently with the
execution of w fall in this class.

Considering the generic task τ ∈ Nt(X) from above, we consider the cases:
– If τ ∈ Nt(SPT) then task τ is associated at least with itself in the execution

of SPT, regardless of τ ’s size.
– If τ /∈ Nt(SPT), τ is in the queue of SPT at time tτ . By its greedy nature,

SPT is executing some task w at time tτ .
• If π(τ) ≥ π(w), then task w will complete by time f(τ) and hence it is

associated with τ .
• If π(τ) < π(w) (i.e., π(τ) = πmin and π(w) = πmax), then τ was injected

after w was scheduled by SPT. If this execution of task w is completed by
time t, then task w is associated with τ . Otherwise, if a crash occurs or
the time t is reached before w is completed, task τ is not associated to any
task in Nt(SPT). Let t∗ be the time one of the two events occurs (a crash
occurs or t∗ = t). Hence SPT is not able to complete task w. Also, since
τ /∈ Nt(SPT), it means that τ is not completed by SPT in the interval [t∗, t]
either. Hence, SPT never schedules a πmax-task in the interval [t∗, t], and
the case that a task from Nt(X) is not associated to any task in Nt(SPT)
cannot occur again in that interval.

Hence, all the tasks τ ∈ Nt(X) that are not associated to tasks in Nt(SPT) are
πmin-tasks and have been scheduled and completed during the execution of the
same πmax-task by SPT. Hence, their aggregate size is at most πmax.

Now let us evaluate the sizes of the tasks in Nt(X) associated to a task in
w ∈ Nt(SPT). Let us consider any task w successfully completed by SPT at a
time f(w) ≤ t. Task w can be associated at most with itself and all the tasks
that X scheduled within the interval Tw = [f(w) − π(w), f(w)]. The latter set
can include tasks whose aggregate size is at most π(w) + πmax, since the first
such tasks starts its execution no earlier than f(w) − π(w) and in the extreme
case a πmax-task could have been scheduled at the end of Tw and completed
at tw + πmax. Hence, if task w is a πmin-task, it will be associated with tasks
completed by X that have total size at most 2πmin + πmax, and if w is a πmax-
task, it will be associated with tasks completed by X that have a total size of
at most 3πmax. Observe that πmin

2πmin+πmax
< πmax

3πmax
. As a result, we can conclude

that Ct(SPT) ≥ πmin

2πmin+πmax
Ct(X) − πmax = 1

2+ρCt(X) − πmax. �	
Conjecture 1. The above lower bound on completed load, still holds in the case
of any bounded number of task sizes in the range [πmin, πmax].

4.2 Speedup s ≥ ρ

First, recall that in Theorem2 we have shown that any work conserving algo-
rithm running with speedup s ≥ ρ has pending-load competitive ratio at most
ρ and completed-load competitive ratio at least 1/ρ. So do the four algorithms
LIS, LPT, SIS and SPT. A natural question that rises is whether we can improve
these ratios. Let us start from some negative results, focusing at first on the

12 A. Fernández Anta et al.

two policies that schedule tasks according to their arrival time, algorithms LIS
and SIS.

Theorem 7. Algorithm LIS has a completed-load competitive ratio

C(LIS) ≤
{

1
2 + 1

2ρ s ∈ [ρ, 1 + 1/ρ)
s
2 s ∈ [1 + 1/ρ, 2)

, and C(LIS) ≥ 1 when s ≥ max{ρ, 2}.
It also has a pending-load competitive ratio

P(LIS) ≥
{

1+ρ
2 s ∈ [ρ, 1 + 1/ρ)

s
2(s−1) s ∈ [1 + 1/ρ, 2)

, and P(LIS) ≤ 1 when s ≥ max{ρ, 2}.
Recall that ρ ≥ 1, which means that 1 + ρ ≥ 2.

Theorem 8. Algorithm SIS has a completed-load competitive ratio

C(LIS) ≤
{

1
ρ s ∈ [ρ, 1 + 1/ρ)

s
1+ρ s ∈ [1 + 1/ρ, 1 + ρ)

, and C(LIS) ≥ 1 when s ≥ 1 + ρ.

It also has a pending-load competitive ratio

P(LIS) ≥
{

ρ s ∈ [ρ, 1 + 1/ρ)
1
s + ρ

1+ρ s ∈ [1 + 1/ρ, 1 + ρ)
, and P(LIS) ≤ 1 when s ≥ 1 + ρ.

In contrast with these negative results, we present positive results for algo-
rithms LPT and SPT. It seems then that the nature of these two algorithms
(scheduling according to the sizes of tasks rather than their arrival time), gives
better results for both the completed and pending load measures.

Theorem 9. When algorithms LPT and SPT run with speedup s ≥ ρ, they have
completed-load competitive ratios C(LPT) ≥ 1 and C(SPT) ≥ 1 and pending-load
competitive ratios P(LPT) ≤ 1 and P(SPT) ≤ 1.

5 Latency Competitiveness

In the case of latency, the relationship between the competitiveness ratio and
the amount of speed augmentation is more neat for the four scheduling policies.

Theorem 10. NONE of the algorithms LPT, SIS or SPT can be competitive
with respect to the latency for any speedup s ≥ 1. That is, L(LPT) = L(SIS) =
L(SPT) = ∞.

Proof. We consider one of the three algorithms ALG ∈ {LPT,SIS,SPT}, and
assume ALG is competitive with respect to the latency metric, say there is a
bound L(ALG) ≤ B on its latency competitive ratio. Then, we define a combina-
tion of arrival and error patterns, A and E, under which this bound is violated.
More precisely, we show a latency bound larger than B, which contradicts the
initial assumption and proves the claim.

Let R be a large enough integer that satisfies R > B + 2 and x be an
integer larger than sρ (recall that s ≥ 1 and ρ > 1, so x ≥ 2). Let also a
task w be the first task injected by the adversary. Its size is π(w) = πmin

if ALG = SPT and π(w) = πmax otherwise. We now define time instants tk

Competitive Analysis of Task Scheduling Algorithms 13

for k = 0, 1, 2, . . . , R as follows: time t0 = 0 (the beginning of the execution),
t1 = π(xR−1 + xR) − π(w) (observe that x ≥ 2 and we set R large so t1 is not
negative), and tk = tk−1 + π(xR−1 + xR) − πxk−1, for k = 2, . . . , R. Finally,
let us define the time instants t′k for k = 0, 1, 2, . . . , R as follows: time t′0 = t0,
t′1 = t1 + π(w), and t′k = tk + πxk−1, for k > 1.

The arrival and error patterns A and E are as follows. At time t0 task w is
injected (with π(w) = πmax if ALG = SPT and π(w) = πmin otherwise) and at
every time instant tk, for k ≥ 1, there are xk tasks of size π injected. Observe
that π-tasks are such that ALG always gives priority to them over task w. Also,
the machine runs continuously without crashes in every interval [tk, t′k], where
k = 0, 1, . . . , R. It then crashes at t′k and does not recover until tk+1.

We now define the behavior of a given algorithm X that runs without
speedup. In the first alive interval, [t1, t′1], algorithm X completes task w. In
general, in each interval [tk, t′k] for every k = 2, . . . , R, it completes the xk−1

tasks of size π injected at time tk−1.
On the other hand, ALG always gives priority to the x π-tasks over w. Hence,

in the interval [t1, t′1] it will start executing the π-tasks injected at time t1. The
length of the interval is π(w). Since x > sρ, then x > (s − 1)π(w)/π and hence
πx+π(w)

s > π(w). This implies that ALG is not able to complete w in the interval
[t1, t′1]. Regarding any other interval [tk, t′k], whose length is πxk−1, the xk π-
tasks injected at time tk have priority over w. Observe then, that since x > sρ,
then πxk + π(w) > sπxk−1 and hence πxk+π(w)

s > πxk−1. Then, ALG again will
not be able to complete w in the interval.

As a result, the latency of X at time t′R is Lt′
R
(X) = π(xR−1 + xR). This

follows since, on the one hand, w is completed at time t′1 = π(xR−1 + xR). On
the other hand, for k = 2, . . . , R, the tasks injected at time tk−1 are completed
by time t′k, and t′k − tk−1 = tk +πxk−1 − tk−1 = tk−1 +π(xR−1 +xR)−πxk−1 +
πxk−1 − tk−1 = π(xR−1 + xR). At the same time t′R, the latency of ALG is
determined by w since it is still not completed, Lt′

R
(ALG) = t′R. Then,

Lt′
R
(ALG) = tR + πxR−1 = tR−1+π(xR−1+xR)−πxR−1+πxR−1 = . . .

= t1+(R − 1)π(xR−1+xR)−π

R−2∑

i=1

xi

= Rπ(xR−1+xR)−π(w)−π
xR−1−x

x − 1
.

Hence, the latency competitive ratio of ALG is no smaller than

Lt′
R
(ALG)

Lt′
R
(X)

=
Rπ(xR−1 + xR) − π(w) − π xR−1−x

x−1

π(xR−1 + xR)

= R − π(w)
π(xR−1 + xR)

− 1
x2 − 1

+
1

xR − xR−2
≥ R − 2 > B.

The three fractions in the third line are no larger than 1 since x ≥ 2, and R is
large enough so that t1 ≥ 0 and hence π(xR−1 + xR) ≥ π(w). �	

14 A. Fernández Anta et al.

For algorithm LIS one the other hand, we show that even though latency
competitiveness cannot be achieved for s < ρ, as soon as s ≥ ρ, LIS becomes
competitive. The negative result verifies the intuition that since the algorithm
is not competitive in terms of pending load for s < ρ, neither should it be in
terms of latency. Apart from that, the positive result verifies the intuition for
competitiveness, since for s ≥ ρ algorithm LIS is pending-load competitive and
it gives priority to the tasks that have been waiting the longest in the system.

Theorem 11. For speedup s < ρ, algorithm LIS is not competitive in terms of
latency, i.e., L(LIS) = ∞.

The proof of the above claim uses the fact that one can force a scenario where
LIS attempts to execute the same πmax-task forever while a different algorithm
can complete infinite πmin-tasks.

Theorem 12. For speedup s ≥ ρ, algorithm LIS has latency competitive ratio
L(LIS) ≤ 1.

Proof. Consider an execution of algorithm LIS running with speedup s ≥ ρ under
any arrival and error patterns A ∈ A and E ∈ E . Assume interval T = [t0, t1)
where time t0 is the instant at which a task w arrived and t1 the time at which it
was completed in the execution of algorithm LIS. Also, assume by contradiction,
that task w is such that Lt1(LIS, w) > max{Lt1(X, τ)}, where τ is some task
that arrived before time t1. We will show that this cannot be the case, which
proves latency competitiveness with ratio L(LIS) ≤ 1.

Consider any time t ∈ T , such that task w is being executed in the execution
of LIS. Since its policy is to schedule tasks in the order of their arrival, it means
that it has already completed successfully all task that were pending in the
central scheduler at time t0 before scheduling task w. Hence, at time t, algorithm
LIS’s queue of pending tasks has all the tasks injected after time t0 (say x),
plus task w, which is still not completed. By Lemma 1, we know that the there
are never more pending tasks in the queue of LIS than that of X and hence
|Qt(LIS)| = x + 1 ≤ |Qt(X)|. This means that there is at least one task pending
for X which was injected up to time t0. This contradicts our initial assumption
of the latency of task w being bigger than the latency of any task pending in
the execution of X at time t1. Therefore LIS’s latency competitive ratio when
speedup s ≥ ρ, is L(LIS) ≤ 1, as claimed. �	

6 Conclusions

In this paper we performed a thorough study on the competitiveness of four pop-
ular online scheduling algorithms (LIS, SIS, LPT and SPT) under dynamic task
arrivals and machine failures. More precisely, we looked at worst-case (adversar-
ial) task arrivals and machine crashes and restarts and compared the behavior of
the algorithms under various speedup intervals. Even though our study focused
on the simple setting of one machine, interesting conclusions have been derived

Competitive Analysis of Task Scheduling Algorithms 15

with respect to the efficiency of these algorithms under the three different met-
rics – completed load, pending load and latency – and under different speedup
values. An interesting open question is whether one can obtain efficiency bounds
as functions of speedup s, upper bounds for the completed-load and lower bounds
for the pending-load and latency competitive ratios. Also, apart from complet-
ing the analysis of these four popular algorithms, designing new ones in order
to overcome the limitations these present, is another challenging future work.
Some other natural next steps are to extend our investigation to the setting
with multiple machines, or to consider preemptive scheduling.

References

1. Adiri, I., Bruno, J., Frostig, E., Rinnooy Kan, A.H.G.: Single machine flow-time
scheduling with a single breakdown. Acta Informatica 26(7), 679–696 (1989)

2. Anand, S., Garg, N., Megow, N.: Meeting deadlines: how much speed suffices? In:
Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755,
pp. 232–243. Springer, Heidelberg (2011)

3. Andrews, M., Zhang, L.: Scheduling over a time-varying user-dependent channel
with applications to high-speed wireless data. J. ACM 52(5), 809–834 (2005)

4. Fernández Anta, A., Georgiou, C., Kowalski, D.R., Widmer, J., Zavou, E.: Mea-
suring the impact of adversarial errors on packet scheduling strategies. J. Sched.
18, 1–18 (2015)

5. Fernández Anta, A., Georgiou, C., Kowalski, D.R., Zavou, E.: Online parallel
scheduling of non-uniform tasks. Theor. Comput. Sci. 590(C), 129–146 (2015)

6. Bansal, N.: Algorithms for flow time scheduling. Ph.D. thesis, IBM (2003)
7. Boyar, J., Ellen, F.: Bounds for scheduling jobs on grid processors. In: Brodnik,

A., López-Ortiz, A., Raman, V., Viola, A. (eds.) Space-Efficient Data Structures,
Streams, and Algorithms. LNCS, vol. 8066, pp. 12–26. Springer, Heidelberg (2013)

8. Epstein, L., Levin, A., Marchetti-Spaccamela, A., Megow, N., Mestre, J., Skutella,
M., Stougie, L.: Universal sequencing on an unreliable machine. SIAM J. Comput.
41(3), 565–586 (2012)

9. Epstein, L., van Stee, R.: Online bin packing with resource augmentation. Discrete
Optim. 4(34), 322–333 (2007)

10. Georgiou, C., Kowalski, D.R.: On the competitiveness of scheduling dynamically
injected tasks on processes prone to crashes and restarts. J. Parallel Distrib. Com-
put. 84(C), 94–107 (2015)

11. Gharbi, A., Haouari, M.: Optimal parallel machines scheduling with availability
constraints. Discrete Appl. Mathe. 148(1), 63–87 (2005)

12. Graham, R.L.: Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math.
17(2), 416–429 (1969)

13. Johnson, D.S., Demers, A., Ullman, J.D., Garey, M.R., Graham, R.L.: Worst-
case performance bounds for simple one-dimensional packing algorithms. SIAM J.
Comput. 3(4), 299–325 (1974)

14. Jurdzinski, T., Kowalski, D.R., Lorys, K.: Online packet scheduling under adver-
sarial jamming. In: Bampis, E., Svensson, O. (eds.) WAOA 2014. LNCS, vol. 8952,
pp. 193–206. Springer, Heidelberg (2015)

15. Kalyanasundaram, B., Pruhs, K.: Speed is as powerful as clairvoyance [scheduling
problems]. In: 1995 Proceedings of the 36th Annual Symposium on Foundations of
Computer Science, pp. 214–221, October 1995

16 A. Fernández Anta et al.

16. Kowalski, D.R., Wong, P.W.H., Zavou, E.: Fault tolerant scheduling of non-uniform
tasks under resource augmentation. In: Proceedings of the 12th Workshop on Mod-
els and Algorithms for Planning and Scheduling Problems, pp. 244–246 (2015)

17. Lee, C.-Y., Liman, S.D.: Single machine flow-time scheduling with scheduled main-
tenance. Acta Informatica 29(4), 375–382 (1992)

18. Pruhs, K., Sgall, J., Torng, E.: Online scheduling. In: Leung, J. (ed.) Handbook of
Scheduling: Algorithms, Models, and Performance Analysis, pp. 15-1–15-14. CRC
Press, Boca Raton (2004)

19. Sanlaville, E., Schmidt, G.: Machine scheduling with availability constraints. Acta
Informatica 35(9), 795–811 (1998)

20. Schwan, K., Zhou, H.: Dynamic scheduling of hard real-time tasks and real-time
threads. IEEE Trans. Softw. Eng. 18(8), 736–748 (1992)

21. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules.
Commun. ACM 28(2), 202–208 (1985)

22. van Stee, R.: Online scheduling and bin packing. Ph.D. thesis (2002)
23. Yao, F., Demers, A., Shenker, S.: A scheduling model for reduced cpu energy. In:

1995 Proceedings of the 36th Annual Symposium on Foundations of Computer
Science, pp. 374–382, October 1995

	Competitive Analysis of Task Scheduling Algorithms on a Fault-Prone Machine and the Impact of Resource Augmentation
	1 Introduction
	2 Model and Definitions
	3 Properties of Work-Conserving and Deterministic Algorithms
	4 Completed and Pending Load Competitiveness
	4.1 Speedup s<
	4.2 Speedup s

	5 Latency Competitiveness
	6 Conclusions
	References

