
34 Published by the IEEE Computer Society 1089-7801/14/$31.00 © 2014 IEEE IEEE INTERNET COMPUTING

Se
cu

ri
ty

 a
nd

 t
he

 R
ea

l-
Ti

m
e

W
eb

Authentication, Authorization,
and Accounting in WebRTC
PaaS Infrastructures
The Case of Kurento

Luis López-Fernández,
Micael Gallego, and
Boni García
Universidad Rey Juan Carlos

David Fernández-López
and Francisco Javier López
NaevaTec

Server infrastructures for Web Real-Time Communications (WebRTC)

are useful for creating rich applications. Developers commonly use them to

access capabilities such as group communications, archiving, and transcoding.

Kurento is an open source project that provides a WebRTC media server and

a platform as a service (PaaS) cloud built on top. The authors present its API

and analyze different security models for it, investigating the suitability of using

simple access control lists and capability-based security schemes to provide

authorization.

W eb Real-Time Communications
(WebRTC) is the umbrella term
for several emergent technolo-

gies and APIs that aim to bring such
communications to the Web.1 Although
still in its infancy,2 WebRTC is a tech-
nological initiative getting considerable
worldwide attention. One of the biggest
challenges with WebRTC is security.
Standardization bodies are investing
huge efforts to address the security
issues associated with performing calls
on the Web,1 but these efforts are con-
centrated at the client. However, the
use of WebRTC media infrastructures is
becoming common practice. For exam-
ple, WebRTC media gateways are typi-
cal in services that require protocol or

format adaptations, as when integrat-
ing WebRTC with the IP Multimedia
Subsystem (IMS).3 Multipoint control
units (MCUs) are often used to support
group communications,4 and recording
media servers are helpful when persist-
ing WebRTC calls.

Here, we concentrate on the infra-
structure side of the problem by first
reviewing the state of the art in this
area and introducing common security
models. Then, we introduce Kurento, a
WebRTC media server, and Nubomedia, a
platform as a service (PaaS) written on top
of it. We experiment with different autho-
rization models that we can implement in
Nubomedia, concentrating on two: access
control lists (ACLs) and capability-based

Authentication, Authorization, and Accounting in WebRTC PaaS Infrastructures

NOvEMbER/DECEMbER 2014 35

security (CAP). We compare both models to show
their advantages and drawbacks.

WebRTC Media Servers
In the past few years, the expectations arising from
WebRTC technologies have brought a golden era to
media server vendors. Just insert “WebRTC media
server” into your preferred search engine, and you
will obtain dozens of solutions. Despite this multi-
plicity, their features fall into just three categories5:

•	 Group communication capabilities include
mixing and forwarding. This type of media
server is called an MCU, following terminol-
ogy from the ITU-T’s H.323 recommendation.6

•	 Media archiving capabilities deal with recor-
ding audiovisual streams into structured or
unstructured repositories and recovering them
later for visualization.

•	 Media bridging capabilities refer to attaining
interoperability among networks or domains
having incompatible media formats or proto-
cols. WebRTC-to-IMS gateways are the most
popular in this area.

WebRTC Media Infrastructures in the Cloud
In the past few years, cloud technologies have
permeated the multimedia RTC market.7 Media
processing is usually associated with high compu-
tational costs,8 so media servers are easily suscep-
tible to scalability problems. This has pushed most
vendors to follow different anything-as-a-service
(XaaS) schemes.9 When looking to the WebRTC
arena, the software-as-a-service (SaaS) model isn’t
especially interesting because it doesn’t exploit
WebRTC’s real benefits (WebRTC is a development
framework and not a specific service). Infrastruc-
ture-as-a-service (IaaS) models expose virtual
instances of media servers but lack horizontal scal-
ability.10 In WebRTC, clouds are making inroads
through the PaaS model. The mainstream tendency
is to reveal platform APIs that offer access to vast
computational resources, exposing some of the
capabilities enumerated earlier.

Security Requirements
Most WebRTC PaaS models4 split the service
roles among three different entities: the PaaS
provider, which deploys and maintains the PaaS
infrastructure and offers its capabilities through
an API; the application provider, which creates
WebRTC-enabled applications based on the

API; and the user, who accesses the application
(and hence consumes the PaaS API) from a Web
browser. Following this model, users access the
PaaS resources, but the PaaS provider charges the
application provider for it. Hence, users access the
PaaS on behalf of the application provider. This
requires the application provider to manage user
identities and credentials, which lets it implement
different types of business models without requir-
ing the PaaS to own any kind of data about users.

From a security perspective, the question is
how this model can deal with the AAA problem:
authentication, authorization, and accounting.
Based on the description just given, the applica-
tion provider — which owns the user identities
— must implement authentication. Authoriza-
tion and accounting, on the other hand, must
be implemented by the PaaS because it receives
and executes API requests. This requires some
kind of mechanism to let application providers
control and limit user access to PaaS resources.

OAuth is the most well-known standard
enabling access to resources on others’ behalf.11 It
allows users to give an application permission to
access their private server resources without sharing
their credentials. However, we can’t apply OAuth to
the described PaaS model because users don’t own
the server resources. The application provider does,
and it must provide the user with the appropriate
permissions to access the PaaS on its behalf. So,
the OAuth roles are somehow inverted, making the
OAuth protocol flow inapplicable.

Implementing Security
Most WebRTC PaaS APIs implement AAA using a
simple, token-based protocol, inspired by OAuth
but with a different flow.4 Figure 1 depicts this
protocol’s message flow, which comprises the fol-
lowing steps:

1. The user’s browser requests access to the appli-
cation. This means that it asks for a specific
webpage (HTML and JavaScript code), which
is hosted at a Web application server (AS) that
the application provider owns. During this
step, the AS can require the user to authen-
ticate using the mechanism it desires: form-
based, HTTP digest, OAuth, and so on.

2. The AS holds a unique identifier of the appli-
cation it’s serving (appId) and a secret pass-
word associated with it. Prior to deploying
the application, the application provider
must obtain both from the PaaS provider.

Security and the Real-Time Web

36 www.computer.org/internet/ IEEE INTERNET COMPUTING

 Depending on the authentication result (step
1) and the application business logic, the AS
determines what permissions to provide to the
user. These permissions are associated with
objects residing at the PaaS or created by the
AS during this step (for example, a “room” for
a group call, or a recorder capability). Next,
the AS asks the PaaS for the appropriate
tokens that grant these permissions.

3. The PaaS validates the application provider’s
access rights using the secret password and
generates the tokens, which are stored with
their associated permissions and security rules
at the PaaS.

4. The AS generates a response page to the user
that contains the client-side application logic,
appId, objectIds of all involved media capa-
bilities, and tokens that let the user access
those capabilities.

5. The user’s browser now executes the client-side
application logic, issuing requests to the PaaS.
Each request carries three parameters: appId
(identifying the application), objectId (identi-
fying the target object), and the appropriate
tokens. Next, the PaaS performs the request
authorization by checking whether the provided
tokens grant the requested permissions that
enable access to the target object.

As we expected with this scheme, authenti-
cation falls to the application provider, and the
PaaS needs to deal only with authorization and

accounting. To implement accounting, the tradi-
tional approach is to use call detail records: every
time an application creates, releases, or accesses
a media object, the platform records into a data-
base the appId, operation type, and objectId. Later,
a batch analysis lets providers implement diverse
billing mechanisms based on this information.
However, different possibilities exist for dealing
with authorization. We review these next.

Authorization Models
The scientific literature has widely analyzed the
authorization problem.12 Here, we concentrate
on two basic mechanisms: ACLs and CAP.13

ACLs control which users in the system receive
which permissions on which objects. To put them
in place, we can just follow the scheme in Figure 1:
the token acts as a unique identifier for a user ses-
sion. Hence, during step 2, the AS requests one token
associated with all the user’s permissions on all the
necessary objects. Then, the PaaS stores in a data-
base lists of objectIds mapped to tokens and permis-
sions so that, for each objectId–token pair, the PaaS
can recover the permissions. Consequently, when
the user client issues a request (step 5), the PaaS can
query the database and check whether the provided
token has permission to execute the requested opera-
tion on the target object.

CAP, on the other hand, uses the token as a
specific permission on a given object. The intui-
tive idea behind our CAP model is simple. Imagine
that every feature of an object is protected by a
“lock,” and that the token is a “key” that lets the
user open the lock. Adapting the Figure 1 scheme
to CAP is straightforward. During step 2, the AS
requests several tokens associated with all the
permissions needed. When the PaaS creates an
object, it generates and stores that object’s full list
of tokens. Hence, the PaaS just needs to send the
appropriate token subset to the AS (step 3). The
AS then gives these tokens to the user (step 4).
Consequently, the user’s requests (step 5) include
the specific token subset that grants the permis-
sions for the target object the operation requires.
When the PaaS receives the request, it only needs
to check that the provided tokens match the
tokens stored at the object.

Implementing AAA in
Kurento and Nubomedia
Our target PaaS is based on Kurento, an open
source software project devoted to building a
WebRTC media infrastructure (www.kurento.org).

Figure 1. Conceptual model of the authentication, authorization,
and accounting (AAA) mechanism. We implemented the model
in a platform-as-a-service (PaaS) infrastructure using the token
security mechanism.

Web browser

User

Web
application

server

PaaS infrastructure

PaaS provider3. Security tokens

2. Request tokens
(appld, objectlds,

permissions, secret)

4.
App

 co
de

(ap
pld

, o
bje

ct
lds

,

to
ke

ns
)

5. W
ebRTC PaaS API

(appld, objectld,

tokens)1.
 A

cc
es

s a
pp

lic
ati

on

au
th

en
tic

ati
on

Application
provider

Authentication, Authorization, and Accounting in WebRTC PaaS Infrastructures

NOvEMbER/DECEMbER 2014 37

At the heart of Kurento there is a piece of software
called the Kurento Media Server (KMS) that’s
based on pluggable media processing capabili-
ties. These capabilities are exposed to application
developers through abstractions called media ele-
ments. The media element toolbox is quite rich;
elements expose features that let applications
record, mix, augment, blend, route, and apply
computer vision to streams, for example.

From an application developer perspective,
media elements are black boxes: you just need to
take the desired elements and connect them follow-
ing the required topology. In KMS jargon, a graph
of connected media elements is called a media pipe-
line. Figure 2 shows the pipeline of an application
implementing a WebRTC loopback, which receives
and sends WebRTC streams (WebRtcEndpoint),
processes the media flow for tracking an object’s
movements (PointerDetectorFilter), and
adds a special effect, such as a hat, on top of the
detected faces (FaceOverlayFilter) when the
object enters a specific region.

KMS exposes its capabilities through its
Media API, which lets clients manipulate media
pipelines through stubs. So, for every media
element, the API exposes an object type with
simple primitives for controlling its behavior.
For example, Figure 2 shows the creation of the
application topology, which requires invoking
the connect primitive on the corresponding
media elements. Given that connect is always
invoked in the element acting as the source and
takes as argument the sink, the specific code is

webRtcEndpoint.
 connect(pointerDetectorFilter)
pointerDetectorFilter.
 connect(faceOverlayFilter)
faceOverlayFilter.
 connect(webRtcEndpoint)

Based on Kurento, we are building a WebRTC
PaaS platform called Nubomedia (www.nubomedia.
eu). Using horizontal scalability,10 Nubomedia
transforms KMS into a distributed media server,
which exposes its capabilities through the Media
API. To implement authorization in Nubome-
dia, we must understand that most WebRTC PaaS
models have created specific roles and permis-
sions associated with each of their capabilities. For
example, when working with MCUs, users might
have roles such as moderator or publisher, which
grant permissions such as the ability to ban users

or publish streams, respectively. Hence, when a
request comes into the PaaS asking for an opera-
tion on the MCU, the PaaS just checks permis-
sions related to the MCU. This illustrates that these
authorization models are “object oriented,” in the
sense that they’re constrained to the capabilities
that a single object can expose. With Nubomedia,
the Media API enables developers to dynamically
modify the pipeline topology and, with it, applica-
tion functionality. Consequently, we also need a
“topology orientation.” This means that the con-
nect primitive requires an authorization mecha-
nism to discriminate who has the right to connect
to whom. We’ve achieved this by introducing two
additional permissions for each media element:

•	 READ_MEDIA. A user holding this permis-
sion on a given media element can invoke
 connect on that element, passing other ele-
ments as argument.

•	 WRITE_MEDIA. A user holding this permis-
sion for a given media element can invoke
connect on other media elements, passing this
media element as argument.

This gives the PaaS full control of the acces-
sible pipeline topologies. The cost is an increase
in the authorization logic complexity, given that
connect invocations require checking permis-
sions on two different objects.

We created minimal prototype implementa-
tions of the ACL and CAP schemes for Nubomedia.
To understand the details, note that, as in most
cloud platforms,8 the Nubomedia architecture has
three layers:

•	 The load balancer receives client requests
and distributes them among the available
computational resources.

Figure 2. Kurento application using computer vision and augmented
reality. The application creates a game in which users can interact
with virtual objects to put on or remove a hat from their heads. This
example is available at www.youtube.com/watch?v=5eJRnwKxgbY.

Client browser
WebRtcEndpoint

WebRTC

SR
C

Si
nk

Si
nk

SR
C

SR
C

Si
nk

PointerDetectorFilter

FaceOverlayFilter

Media pipeline

WebRTC
streaming

Security and the Real-Time Web

38 www.computer.org/internet/ IEEE INTERNET COMPUTING

•	 The API manager layer supplies the PaaS API
semantics. With Nubomedia, this layer is in
charge of aspects such as locating the best media
server for placing a media element or coordinat-
ing communication among media elements.

•	 The media server layer holds the media
elements where operations such as media

reception, processing, transcoding, or
recording take place. It comprises several
KMS instances whose number can grow or
shrink to adapt to the offered load.

We can implement ACLs on top of this archi-
tecture following the model depicted in Figure 3a.
We can see from the figure that the best location
for the authorization logic is at the API manager
layer. The tokens and their associated permissions
are generated there and stored in a database, where
the authorization logic can query them later.

With CAP, the best architectural option is to
let media elements hold the CAP tokens them-
selves as part of their internal state (see Figure 3b).
Hence, the authorization logic is placed directly
on the media server. Unlike with ACLs, in CAP, the
number of tokens per object is independent of the
number of users. Consequently, each object needs
to store only a fixed, small number of them.

Discussion
To compare the two proposed models’ strengths
and weaknesses, we generated benchmarks for
our Nubomedia prototype ACL and CAP imple-
mentations. We used a test instance of Nubo-
media deployed on a 100Base-T LAN with three
i7 dual-core/8-Gbyte boxes executing Ubuntu
14.04 and Java 7. We based the ACL databases
on MySQL v5.5.37.

As Figure 4 shows, CAP authorization has
a significant advantage in terms of speed. The
explanation for this is straightforward: when
using ACLs, each API request must receive autho-
rization by querying a database, which is a slow
operation. Given that the Nubomedia connect
primitive requires checking permissions on two
different objects (that is, issuing two queries),

Figure 3. Architecture of (a) an access-control-list-based authorization and (b) a capability-based authorization. We
implemented both models in Nubomedia.

Request to access capability

(appld, objectld, token)
Request to access capability

(appld, objectld, token)

Load
balancer

API manager
layer

Media server
layerLoad

balancer
API manager

layer

Media server
layer

Media
capability

JSON-RPC
(objectld)

JSON-RPC
(appld,

objectld,
token)

Media
element

appld
objectld
tokens

Authorized?

Authorized?

Query

ACLs
objectld
token

permissions

(a) (b)

Figure 4. Experimental authorization benchmarks
obtained for a running instance of Nubomedia.
Diamonds indicate the capability-based security
(CAP) authorization times (local to the specific
media server instance holding the accessed
object). Triangles indicate access control list (ACL)
authorization times when there is a shared
authorization database for all API manager instances
(remote database). Squares show ACL authorization
times when a cache of the authorization database
is maintained on each API manager instance (local
database). The experiment considers users sending
requests to a pipeline with 10 media elements
having five permissions each. Each experiment
consists of 1,000 requests per user, 60 percent of
which have positive authorization.

1,000

100

10

1

0.1
100 1,000 10,000

No. of (simulated) users in the PaaS

A
ve

ra
ge

 a
ut

ho
ri

za
tio

n
tim

e
(μ

s)

100,000

CAP

ACL cached
ACL

Authentication, Authorization, and Accounting in WebRTC PaaS Infrastructures

NOvEMbER/DECEMbER 2014 39

this issue in particular hurts its performance. On
the other hand, CAP authorization takes only the
necessary time to compare a couple of tokens
held in memory, which is much faster.

However, the proposed CAP scheme also has
drawbacks. The most important is that ACLs can
provide more fine-grained authorization logic.
The intuition behind this is simple: our CAP
model is agnostic to user identities. Hence, any
authorization logic requiring user differentia-
tion isn’t possible. To understand why, imagine
a simple scenario in which an application pro-
vides live WebRTC event retransmission (such
as a football match). The application provider
lets premium users visualize the event from
different perspectives, but restricts free users
to a single camera. This scenario is associated
with a pipeline such as the one Figure 5 depicts.
Without losing generality, we assume only two
cameras (F for free and P for premium) and two
users. Following our CAP scheme, the permis-
sions the AS provides should be those Table 1
shows. However, CAP tokens might be copied
and exchanged, and user P might wish to share
her camera P token with user F, letting him
visualize the premium content. When working
with ACLs, we can avoid this. ACL tokens are
associated with user sessions. Hence, we might
use a quota mechanism to avoid user F access-
ing the premium content with user P’s token.

I n general, CAP is appropriate for applications
in which users have no incentive to share

their CAP tokens. Security models based on this
type of principle are commonly used in the Web
(that is, people don’t have incentive for sharing
their HTTP cookies when accessing their banks
online). Hence, CAP authorization can prob-
ably be used safely in most scenarios involving
WebRTC call models (such as videoconferences
and group calls), but it isn’t appropriate for
those applications combining different lev-
els of access to resources (free, premium, and
so on), nor for applications requiring revokable
permissions in a per-user scheme (for example,
revoking a given permission from one user but
maintaining it for others).

Acknowledgments
This work is supported by the European Commission

under projects FI-WARE FP7-2011-ICT-FI, GA-285248, and

NUBOMEDIA FP7-ICT-2013-1.6, GA-610576.

References
1. S. Loreto and S.P. Romano, “Real-Time Communications

in the Web: Issues, Achievements, and Ongoing Standard-

ization Efforts,” IEEE Internet Computing, vol. 16, no. 5,

2012, pp. 68–73.

2. A.B. Johnston and D.C. Burnett, WebRTC: APIs and RTC-

WEB Protocols of the HTML5 Real-Time Web, Digital

Codex, 2012.

3. IP Multimedia Subsystem (IMS); Stage 2, 3GPP tech.

specification 23.228, work in progress, 2014.

4. P. Rodríguez et al., “Vaas: Videoconference as a Service,”

Proc. IEEE 5th Int’l Conf. Collaborative Computing: Net-

working, Applications, and Worksharing, 2009, pp. 1–11.

5. T. Melanchuk, An Architectural Framework for Media

Server Control, IETF RFC 5567, June 2009; http://tools.

ietf.org/html/rfc5567.

6. G.A. Thom, “H. 323: The Multimedia Communications

Standard for Local Area Networks,” IEEE Comm., vol. 34,

no. 12, 1996, pp. 52–56.

7. Y. Wen et al., “Cloud Mobile Media: Reflections and Outlook,”

IEEE Trans. Multimedia, vol. 16, no. 4, 2014, pp. 885–902.

Figure 5. Media pipeline. The pipeline is associated with an
application in which users might have an incentive to share
capability-based security tokens.

Camera F

Distributed media pipeline

WebRtcEndpoint F

WebRtcEndpoint PCamera P

SR
C

Si
nk

Si
nk

SR
C

Si
nk

SR
C

Si
nk

SR
C

WebRTC

WebRTC

WebRTC

WebRTC

Table 1. Capability-based security (CAP) tokens.*

Media element CAP token User F User P

Camera F READ_MEDIA

WRITE_MEDIA

Camera P READ_MEDIA

WRITE_MEDIA

WebRtcEndpoint F READ_MEDIA

WRITE_MEDIA

WebRtcEndpoint P READ_MEDIA

WRITE_MEDIA

*The application server provides the tokens to different users for the event
retransmission example application. The shaded cell indicates the position of the
authorization breach.

Security and the Real-Time Web

40 www.computer.org/internet/ IEEE INTERNET COMPUTING

8. I. Ahmad et al., “Video Transcoding: An Overview of

Various Techniques and Research Issues,” IEEE Trans.

Multimedia, vol. 7, no. 5, 2005, pp. 793–804.

9. J. Cáceres et al., “Service Scalability over the Cloud,” Hand-

book of Cloud Computing, Springer, 2010, pp. 357–377.

10. L.M. Vaquero, L. Rodero-Merino, and R. Buyya, “Dynami-

cally Scaling Applications in the Cloud,” ACM SIGCOMM

Computer Comm. Rev., vol. 41, no. 1, 2010, pp. 45–52.

11. D. Hardt, The OAuth 2.0 Authorization Framework ,

IETF RFC 6749, Oct. 2012; http://tools.ietf.org/html/

rfc6749.

12. V. Suhendra, “A Survey on Access Control Deploy-

ment,” Security Technology, Springer, 2011, pp. 11–20.

13. R.S. Sandhu and P. Samarati, “Access Control: Principle

and Practice,” IEEE Comm., vol. 32, no. 9, 1994, pp. 40–48.

Luis López-Fernández is an associate professor in the Tele-

communications Engineering School at the Universidad

Rey Juan Carlos, Madrid, where he leads the Future

Networks Laboratory research group and the Kurento

.org initiative. His research interests include Web infra-

structures and services, with special emphasis on the

creation of multimedia real-time communication plat-

forms and applications involving advanced media pro-

cessing features. López-Fernández received a PhD in

computer science from Universidad Rey Juan Carlos. He

is a member of IEEE. Contact him at luis.lopez@urjc.es.

Micael Gallego is an assistant professor in the Computer Sci-

ence Department at the Universidad Rey Juan Carlos,

Madrid, and acts as the chief software architect for the

Kurento.org project. His research interests focus on the

interface among computer science, operations research,

and networking technologies. Gallego received a PhD

in computer science from Universidad Rey Juan Carlos.

Contact him at micael.gallego@urjc.es.

Boni García is a research engineer in the Future Network

Laboratory at the Universidad Rey Juan Carlos, Madrid,

where he coordinates the validation and evaluation of

the infrastructures behind the Kurento.org initiative. His

research interests are concentrated on the evaluation of

computing and networking infrastructures through objec-

tive and subjective metrics and indicators. García received

a PhD in telematic systems from the Universidad Politec-

nica de Madrid. Contact him at boni.garcia@urjc.es.

David Fernández-López is a research engineer at NaevaTec,

where he creates advanced media processing capabilities

for the Kurento.org project. His research interests include

computer vision and media processing. Fernández-López

received an MSc in computer vision from the Universidad

Rey Juan Carlos, Madrid. Contact him at dfernandez@

dev.naevatec.com.

Francisco Javier López is chief technical officer of NaevaTec,

where he leads the research team involved in the Kurento

.org initiative, and a part-time professor in the Future

Network Laboratory research group at the Universidad

Rey Juan Carlos, Madrid. His research interests focus

on applications of multimedia real-time communication

services to vertical markets, including e-health, customer

relationship management, enterprise resource planning,

and security. López received an MSc in telecommunica-

tions engineering from the Universidad Politecnica de

Madrid. Contact him at fjlopez@naevatec.com.

Selected CS articles and columns are also available
for free at http://ComputingNow.computer.org.

• Hybrid journals known for their established impact factors

• New fully open access journals in many technical areas

• A multidisciplinary open access mega journal spanning all
 IEEE fields of interest

IEEE Open Access

IEEE offers a variety of open access (OA) publications:

Discover top-quality articles, chosen by the IEEE peer-review
standard of excellence.

Unrestricted access to today’s groundbreaking research

via the IEEE Xplore® digital library

Learn more about IEEE Open Access

www.ieee.org/open-access

12-TA-0424-Open Access 3.25x4.75 Final .indd 1 9/24/12 10:06 AM

