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Abstract

This paper is focused on the system side of the multidisciplinary problem of build-
ing User Interface Management Systems (UIMS) for distributed and heterogeneous
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tory and personal computers. It supports transparent distribution, replication, and
migration of user interface elements among highly heterogeneous devices. Moreover,
it is highly programmable without the need for special tools, which (i) facilitates
experimentation and iteration for new HCI techniques and (ii) enables the creation
of orthogonal services to manipulate programmatically and independently the ele-
ments of the distributed UI. This paper describes both the approach and the O/live
UIMS and Window System.
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1 Introduction

User interfaces are central to pervasive computing applications. HCI issues in
this environments are particularly challenging. As a prerequisite to address
them, we need an architecture which meets several requirements that we de-
scribe now.

As it can be seen, we enumerate only the ones we consider most relevant. Along
with each one we include an example scenario, addressed by our approach,
which is not handled well by other related work.

• Integration of distributed I/O devices to support UIs on behalf of users
and applications. Today, users have a myriad of I/O devices. Therefore
UIs should be able to combine them. Only users know which devices are
convenient as an interface each time an application is needed, and it does
not really matter where the application runs.
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Fig. 1. Scenario, user controlling lights and presentation.

For example, as depicted in figure 1 the user might want to use the touch-
screen of a smartphone to dim the lights and then press some buttons to
control a video player displayed in a video wall as part of a presentation. In
this case, different applications are involved and they are likely to execute
on diverse machines. Each one will have its own UI, yet the user might de-
sire to employ the smartphone as the controller for both the light control
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appliance and the home video-wall installation.
• Combination of highly heterogeneous devices. Besides being dis-
tributed, I/O devices are quite different. Compare for example the display
used in a desktop computer with the one used in a smartphone. Or compare
any of them with a voice controlled device. Applications should be able to
exploit these resources without being exposed to low level details of interest
only to widget implementors.
In the previous example, the devices involved may be a smartphone, a

system-on-a-chip embedded device controlling a KNX [1] network (a kind
of sensor/actuator network infrastructure) acting as the light controller,
and a media player device connected to a large display. The applications
running in these devices may have their own UIs, probably suited to the
I/O devices of their respective machines, which depart from the smartphone
I/O capabilities.
Moreover, it is important to have an architecture which abstracts the de-

tails of I/O devices and makes it easy to integrate them into the system.
When radically new I/O devices appear like, for example, Siftables [2], it
is always unclear how they should interact with regular applications. Ab-
stracting and reifying them as a component of the UI makes it easier to
experiment with them.

• Replication and re-arrangement of widgets at will. Both the user
and the applications should be able to customize and reconfigure UIs, even
when it means to split an existing UI (e.g., to move or copy several controls
to a different device without moving or copying the rest of the UI). In many
cases, this implies replicating widgets (e.g., keeping a copy of the original
controls in their original place). Even further, an application can share or
borrow widgets from another applications, blurring the limits of what an
applications is.
In the scenario presented, the smart room controller shown in the smart-

phone might be interested only in some parts of the UI of the video player
(e.g., elementary play, pause, and stop buttons) and the light controller
(e.g., the dimmer bar of the light controller application).

• Programmatic interfaces for distributed, heterogeneous UIs. It is
clear that many applications will have to be able to inspect and modify
their own UIs. Furthermore, for integration and deployment purposes, an
application may want to inspect and modify UIs of other applications, per-
haps remote. All the operations on widgets, including common interaction
(e.g., pressing a button) layout customization, etc. should be provided in a
programmatic way.
In the proposed example, the user or a third party might build a smart

room controller, simply by combining the relevant widgets of the other ap-
plications. Actions like, for example, locating switch-off buttons for lights
in the room and pressing them, must be available for external programs.
Note that this requirement is harder than the distributed application model

requirement posed by [3], because it requires the UI to be reified and dis-
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tributed with independence of the application so it can be controlled by the
application, the user or external applications.

• Neutrality with respect to programming languages and applica-
tion runtimes. Today, multiple programming languages and run time plat-
forms are used even within a single device. In many cases, even within the
same application. It is desirable for the UI technology to be agnostic in this
respect.
This requirement includes what other authors call legacy system agnosti-

cism [3].
• A distributed security model. Having distributed programming inter-
faces requires the means to protect and keep secure the resources exported,
in this case the user interfaces. This requires a model for authentication,
authorization and access control.

Such requirements are needed not just for achieving targets like plug-and-play
computing [4] and pervasive computing in general, but to be able to address
the HCI needs on any distributed environment with multiple input methods.
Also, some of these requirements (e.g., providing programmatic interfaces)
are important to create low viscosity [3], which means that the infrastructure
facilitates iteration and experimentation of new user interfaces and new HCI
methods both at design-time and runtime. This is essential to find new ways
to overcome the UI isolation and absence of integration in modern computing
environments, where the user has access to multiple devices like smartphones,
big shared displays, small embedded devices, etc. and can only use them in an
integrated fashion through the use of ad-hoc applications or specially written
software.

Devising an UIMS and an architecture satisfying all the issues stated is an
example of deep approach [5]. Deep approaches seek to directly influence the
architecture of the HCI infrastructure itself. They require the engagement of
multiple technical disciplines, and as a consequence broaden the scope of the
problem, which spans from computer interaction to application and system
design. We have centered ourselves mainly, coming from an OS background,
in a thorough redesign of the architecture of the way user interfaces are con-
structed, used by applications and accessed by external programs. To the best
of our knowledge, there is no UIMS addressing all the requirements in an inte-
grated and uniform way. This claim is justified in section 3, discussing related
work.

We have developed a new architecture to address all this requirements, and
built the O/live UIMS using it. This architecture has profound implications
for HCI when using it in practice. It allows programmers to create applications
that provide the final user with the illusion of a single virtual computer, in
which the interfaces are not longer a monolithic block of controls; now, these
controls are not confined to a single device or machine, and they do not dictate
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a unique mode of interaction for using them.

The basis of our approach is the use of distributed synthetic virtual file sys-
tems. Filesystem access is portable, supported in almost all programming lan-
guages, and operating systems, has legacy tool and application support and
known solutions for access control.

As part of the implementation of the architecture, we have developed a UI
which satisfies us as programmers and which we have used also to iterate
through different forms of interaction. The reader needs to be warned though,
that the user interface, while productive and powerful, lacks the eye candy of
commercial operating systems. Adding new viewers to the architecture with
either a more traditional look or using completely different and new input
methods is not only possible but easy, due to the designed we have followed.

2 The O/live approach

To address the requirements previously described, we have developed a novel
architecture and have implemented an actual UIMS and Window system,
O/live. It is an evolution of an earlier prototype called Omero [6]. The main
idea of our approach is to decouple both the user interaction and the appli-
cation from the state of the user interface. This scheme facilitates (i) using
different displays to access the same interfaces, (ii) combining widgets from
different distributed applications, (iii) abstracting widgets to be manipulated
through poor network connections, (iv) creating multimodal viewers, and (v)
preserving the state of the interfaces between sessions. The ideas underlying
the new architecture are simple ones:

• Widgets are represented as an abstract set of synthetic (virtual) networked
file hierarchies, describing their state. This idea is depicted in figure 2. Note
that by files we mean a file-like API with a small set of operations (open,
read, write, etc.) distributed by using a network file system protocol (similar
to CIFS, NFS or 9P). Applications operate on these files to update their
interfaces.

• In order to manage the state of the interfaces, a file server program provides
these “files” and dynamically processes operations over them. The file server
coordinates their replication and the concurrent access for both applications
and viewers, and provides notification services. UI subtrees may be freely
replicated and re-arranged without disturbing the application.

• User interaction, I/O activity, and editing are confined to viewers. Viewers
choose which UI trees or subtrees to display by remotely accessing file sub-
trees. Therefore, viewers are able to operate on remote trees of widgets, and
they are free to implement them in an appropriate way for the particular
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Fig. 2. Widgets are represented by a hierarchy of files. The UIMS is a file server
providing files. The viewer mounts a subtree and represents it.

device(s) on which they are deployed.

These ideas can be combined to address the issues enumerated in the intro-
duction, as we briefly show in the rest of this section.

Using distributed files as the interface for building UIs greatly helps porta-
bility, because viewers are free to represent data in any way that fits the
particular devices they use. For example, a viewer might use voice to repre-
sent menus, another might use pixmaps, and another might use text. As a
result, it is trivial for the application to support highly heterogeneous I/O
devices: It has to do nothing in that respect. The application is only in charge
of updating the state of its widgets. Representation and most interaction tasks
are transparent for the application.

This approach permits us to easily compose different elements within UI con-
tainers, because widgets appear to be files. As such, they can be easily copied,
moved, modified, and inspected, and programs can handle them easily. This
technique permits us to easily implement a widget editing language to operate
on distributed elements, similar to the Sam language [7,8], with the advantage
of managing elements from different UIs that may be in different machines.

Applications may operate on network file trees that represent widgets, unaware
of their replication. A central program coordinates the replication of these files
providing different file trees used by UI viewers. For the application, there is
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no replication, distribution, or rearrangement of (parts of) its UI.

Viewers interface between I/O devices and the UIMS. They interact with the
UIs by accessing a per-viewer file tree that represents them, and they may
remain mostly unaware of replication, but for a few details. Sections 5 and 6
describe the architecture and provide more details about the distribution of
the system.

In the scenario described in the introduction, the cellphone and the media
player may be both running viewers. The player application running, for ex-
ample on the user laptop can have parts of its interface replicated on both
viewers which would mount the central file server by using a network file sys-
tem protocol. The player application would be oblivious of the existence of
the viewers. The interactions between the viewers and the UIMS and between
the UIMS and the application are mediated by the distributed file system
interface.

This approach, using distributed file systems as programmatic interfaces to
distribute resources has many benefits in general, as has been known for a
while in the distributed systems field, see for example [9], but it has extra
benefits to represent widgets and user interface interaction. We summarize all
them here.

The first and most important is portability. All programming languages pro-
vide support for using files 2 . Therefore, they already provide support for UI
programming on O/live, because the interface is just a file system. Applica-
tions do not depend on any UI library whatsoever. Moreover, users are able
to inspect the widgets just by browsing the file tree, so they do not depend
on specific tools. Of course, there must be system support to access remote
files, but most operating systems provide it (e.g., WebDAV is supported by a
wide range of conventional and mobile systems). For example, despite draco-
nian file access restrictions in iOS (i.e., iPhone and iPad), it permits accessing
files from the network (e.g., using WebDAV 3 ), which means that it would be
able to access files from O/live. Therefore, it would be feasible to implement
viewers in these devices. When the operating system does not provide native
support to access remote files, a library can be used (e.g., a WebDAV client
library).

Related to portability is legacy tool and application support, any shell scripting
environment and file-manipulation tool can be used to deal with them. Simple
scripts and file utilities are now able to operate on UIs and widgets. For
example, UNIX file tools like du and find, both of which are commands that

2 See for example http://rosettacode.org/wiki/File IO.
3 See for example GoodReader for iOS, which uses WebDAV to import and export
documents.

7



transverse a file hierarchy, may be used to locate buttons. Simple programs
like the UNIX program echo, which just prints a string, may be used to press
them. Most users will not want to write scripts, but for system administrators
and programmers this feature allows fast prototyping, automating UI tests,
and a simple way to write small but powerful applications. In few words, any
application or device capable of manipulating files can be used to control the
widgets. Section 7 discusses this point.

Distribution of file systems has well-known solutions. This means that distri-
bution is fairly easy using some form of network file system.

Using a file representation means also that, provided an authorization domain
is shared, authentication, authorization and access control can work like in
any other distributed file system. This means that, because the user interface
file system is distributed to the network, a viewer of one user may be able
to represent (or not, depending on permissions) parts of the UIs of another
user. It is important to remember that this is the programming interface (or
maybe the user interface for advanced users). One can easily imagine a simple
application for sharing UI subtree, for example by dragging them to an icon
of the user. Under the covers, this application would set the permissions.

Our approach does not rely on middleware toolkits and it is not object ori-
ented, yet it is more flexible and easy to program than other UIMS systems
that require using well known toolkits. Our experience with the system in the
past few years supports this claim. Furthermore, if the file based interface
is not suitable for some developers or projects, it is trivial to create wrapper
libraries to hide file system operations behind an object oriented interface.

The work presented here is in production and we have been using it daily
for some years now. You can refer to http://lsub.org/ls/octopus.html for
source code, documentation, and some demonstration videos.

3 Related work

The literature for UIs and UIMS is very extensive. Due to the space constraints
for this paper, we regret to cite only a handful of related systems that we
hope are representative enough to permit comparing O/live with those not
mentioned.

To the best of our knowledge, this is the only UIMS that allows distributed and
highly heterogeneous I/O devices to be freely combined by users to operate
on distributed, replicated, widgets in a transparent way for the application.
That is the main difference with respect to other related work.
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Most related work, including the few systems mentioned here, is either not able
to support such a high heterogeneity or not able to do it transparently or does
not give users (and programs) the high degree of freedom to, independently,
operate on replicated (portions of) distributed widgets. Those that are close
to achieving this, require specific middleware or languages and/or specific and
complex toolkits [10].

Furthermore, O/live is the only UIMS that we know that provides a highly
scriptable and programmable interface based entirely on file-like interfaces,
providing, among other things, external names to widgets, protection for them,
and enabling the use of general-purpose file tools and scripts to operate on
interfaces and interface elements.

Omero [6] is a direct ancestor of the UIMS presented here. In Omero the
application relies on a small library that talks to the UIMS. Omero was a de-
parture from other systems in that it provided a file interface and also in that
its library coordinated operation of replicated widgets, making the replication
transparent for the application. However, it made the mistake of embedding
representation of widgets within the UIMS, thus becoming a window system,
and not fully decoupling state handling for widgets from their representation.
This is important and harms multi-modality and portability. In addition, its
design had some drawbacks. The distributed editing required coordination
between different Omeros with support from the application’s library. In ad-
dition, a separate discovery service was required, because all Omeros were
peers and there was no place where to look for the list of known devices. Last,
Omero was in charge of drawing and accepting input from devices. This means
that, although different implementations were feasible, there was no way to
separate user interaction from widget management (e.g., as it could be done by
following a MVC design). All these issues have been solved in O/live. Either
way, we have to say that Omero is an early prototype for O/live, and it must
be seen as a previous step in the development of the architecture introduced
by this paper.

The Plan 9 window system [11] uses files as the primary interface (like O/live
does) but, in most other aspects, it is a traditional and centralized window
system. It uses files as an interface for low level operations (e.g., draw a rect-
angle). Unlike in our approach, it does not include the concept of widget (nor
other comparable abstraction) and it has no support for replication or cus-
tomization of user interfaces.

VNC [12] and similar desktop sharing systems have nothing to do with O/live.
They provide viewers for remote virtual framebuffers. In contrast, in O/live,
the network dialog involves abstract data, and not pixmaps or mouse and
keyboard events. For example, VNC does not work well on WANs due to
latency problems; O/live does. Increasing the level of abstraction and using
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widgets instead of rectangles helps in this respect. We have been using the
system for our daily work and it has encountered a broad range of network
bandwidths and latencies (e.g. 1 Mbit/s overseas connections with ≈ 150 ms
of RTT and home connections with ≈ 250 ms of RTT). The system worked
well despite the viewer and the central node being connected through all these
networks. In addition, VNC does not permit to replicate or rearrange widgets;
O/live can do it. Finally, VNC does not enable multimodal viewers, because
it works at drawing level.

Wallace et al. [13] propose shared displays supported by introducing “net-
worked application windows”, so that multiple input and output devices may
be used, perhaps shared. This work derives from VNC. Authors focus on shar-
ing of displays using application-window granularity, which prevents support
for highly heterogeneous environments. Unlike us, they do not decouple the
application from the implementation of its interface. Also, users can not cus-
tomize interfaces (because they are still monolithic windows, as in traditional
window systems). But in O/live, a user can drag parts of UIs and rearrange
them at will, even to a different machine. Though technically what is imple-
mented is pick-and-drop [14], with some minimum support to teleport the
pointer it can be trivially converted into hyperdragging [15] or stitching [16].
Actually, we have been using different programs to teleport mouse pointers
(some implemented by us, some not) and we normally hyperdrag of parts of
the UI.

There has been previous work using a distributed shared data structure model
as their foundation. As an example, Recombinant Computing [17] proposes
distributing serialized objects acting as proxies or mediators of the interac-
tion. This approach has two different problems. The first is that it is difficult
to port to different systems, architectures and frameworks. In their implemen-
tation, they use serialized Java objects, which means that, to interact with
this infrastructure, a device needs to be able to run the Java methods they
contain. Furthermore, data, behavior and programming interface are inextri-
cably tangled in this approach and it is difficult to uncouple them as argued
in [3]. The same problems apply to [18].

Another example of distributed shared data structure model is One.world [19].
One.world migrates application data codified as tuples serialized using Java
classes. Again, this means that any device which needs to interact with the
infrastructure needs to run Java. One.world also depends on broadcast on a
local network. Issues like access control, or having a wider scale interaction
through the internet is unclear how it would be solved, as their own authors
acknowledge.

Closer to our approach is Shared Substance [3]. Shared Substance is com-
pletely data oriented, has a tree structure and the distributed interfaces are
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organized like a file system, except it is not a file system. Instead, it is an
ad hoc composition distributed data model accessed through a custom made
middleware which has most of the operations and properties of a file system.
Shared substance could easily benefit from our approach, gaining in porta-
bility, because its resources and interfaces are almost those of a file system.
Another important difference between Shared Substance and the approach
of O/live is that it defines a distributed application model, whereas we de-
fine a reified distributed UI and UIMS model. O/live clearly separates the UI
and UIMS from the application and provides a general portable programming
interface that reifies both.

Research on declarative descriptions for user interfaces (e.g., XML based lan-
guages like XForms) permits adaptation to peculiarities of devices like display
resolution and so on [20–27]. Souchon et al. published a comprehensive review
of these languages [28]. A file hierarchy per se provides a tree-based scheme
and a namespace. Many other systems rely on XML just for achieving these
basic requirements. In our approach, names are dynamically validated by the
synthetic file system. Therefore, naming convention violation in a file system is
analogous to schema violation when using XML. Once hierarchical naming is
provided, XML stops being so useful and resorting to simple space-separated
text and conventions is enough. In any case, notice that the file-tree approach
does not exclude XML on the leaves if this is wanted. Moreover, a file system
provides a protection model (file permissions), an introspection mechanism
(the file system itself is a dynamic browsable representation of the live state),
and a distribution mechanism (network file system protocol). An XML declar-
ative description by itself does not provide any of these features.

There are many systems that use such markup languages to describe the inter-
faces. For example, SUPPLE [29], TERESA [30] and MARIA [31] exploit this
to customize interfaces for heterogeneous devices. Another example is CON-
SENSUS [32], which uses RIML, a language based on XHTML and XForms.
Applications describe their interfaces using RIML. An adaption engine, exter-
nal to both the application and the user device, is in charge of adapting the
RIML description to the specific kind of device. The RIML markup language
includes some meta-data to the user interface description, which is exploited
by the adaption engine. Unlike these systems, we suggest using synthetic files
as an abstract representation for widgets. This greatly simplifies supporting
highly heterogeneous interfaces.

XWeb [33] leverages Web technology adding new interfaces for interaction
and collaboration. Like O/live, XWeb permits different views of UIs for dif-
ferent platforms and uses widgets as the main abstraction. Unlike O/live, it
requires the introduction of new protocols, middleware, and abstractions. In-
stead, O/live leverages files, already supported in all computing platforms, and
successfully addressing important issues like naming, protection, concurrency
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control, etc. For example, O/live can rely on file access control lists to control
which users can access which widgets. This issue was solved decades ago for
files. However, it is not yet clear what the way to do the same for, e.g., XWeb
widgets is. As another example, external applications and users can rely on
file names to operate on widgets. It is not clear how applications other than
XWeb clients can name and use XWeb widgets.

Extensions to X and some of its toolkits for SNAP Computing [4] aim at
plug and play computing. They point out that user interfaces cannot be built
assuming one user, or one graphics device, or one input device. Interfaces
must be able to cope with multiple users, multiple I/O devices. Replication
and migration of interfaces is therefore a requirement. The focus of their work
is quite different from ours. They do not focus on decoupling applications from
the UIMS and viewers and do not operate on abstract and uniform interfaces
as O/live does. In contrast, O/live fully decouples the application from the
user interfaces. Also, it is unclear if there is a functional prototype already
implemented for SNAP Computing.

Systems like Fresco [34] and Morphic [10] provide middleware components for
programming distributed UIs. Unlike our work, they require the application
to use the middleware chosen by the platform developers. O/live just requires
using files, and so, general purpose file tools, the shell, its commands, and any
programming language capable of using files (e.g., Python, C++, or Java) can
be used to manage widgets.

Systems like UBI and Migratable UIs [35,36] enable migration of UIs. How-
ever, they do not provide an external interface to use external tools leveraging
migration facilities and they require more complexity at the toolkit level. In-
stead, we simplify and abstract widgets to make migration and replication
easier.

UI façades [37] was built on Metisse [38] and permits users to select and
rearrange components from interfaces transparently to the application. The
problem with their approach is that independent views cannot be handled
independently (for example, a scroll in one would scroll others) and that the
abstraction level is not enough to enable use of highly heterogeneous devices.

VPRI’s work [39] leads to powerful scripting tools to handle widgets. A huge
difference is that O/live enables using the system shell and any previously
existing scripting or programming language, as explained before.

HML5 [40] introduced important features for developing Web-based user in-
terfaces. It focuses in the interaction between web browsers, playing a role
similar to O/live viewers, and application providers. Our work could bene-
fit from HTML5 features by implementing web viewers for our architecture,
which is addressing different issues, as explained above.
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In general, Restful [41] approaches are somewhat similar to the file tree inter-
face in that they have a small set of operations with well defined semantics and
a name space convention. It still lacks the well-known unified approach for ac-
cess control and the portability that network file systems provide. The problem
is the absence of well known data representation and interfaces for directories
and metadata. Even though opening a connection and using GET, POST and
other HTTP requests, the tree provided by the file system needs to be created
ad-hoc and in many cases this also means parsing service specific HTML or
XML. As a consequence, each runtime needs to use its own language-specific
binding to address and access these service methods. On the other hand, the
interface for accessing files is already present on any programming language
for any given operating system, included how to access directories and their
metadata, how to add and delete resources, etc. Semantics for concurrent file
operations are also well defined and understood on distributed environments.
For example, what happens if the root directory of a tree being accessed is
deleted.

The list of benefits deriving from the use of files is too large to be detailed
here. But it is a crucial difference between O/live and most related works and
we can only hope that examples made illustrate the point.

Last but not least, there are many languages for scripting and automation
of UI-related tasks, but the one included in O/live permits to operate on
all widgets of interest, distributed perhaps overseas 4 , no matter the machine
where they are being used, without any code in the application to support the
distribution [42]. In contrast, scripting facilities like Applescript operate on a
single machine. Section 5.2 provides further details on this issue.

4 UI Elements as files

In O/live, any UI consists of a tree of widgets known as panels. There are two
kinds of panels: groups (called rows and columns, after two popular types of
groups) and atoms. Rows and columns group inner panels and handle their lay-
out. A row/column arranges for inner panels to be disposed in a row/column.
All groups are similar and describe how to handle the layout, as a hint to
represent the widgets on graphic devices. Atoms include text, tables, buttons,
(text) tag-lines, images, gauges, sliders, panning-images, and vector graphics.
The particular set of panels is just a detail of our implementation, but not
a key point in our approach, which would still work as long as the panels
implemented are kept abstract enough.

4 This feature is possible by doing lazy updates of high-level of abstraction events.
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Fig. 3. Widgets are represented by a hierarchy of files. The UIMS is a file server
providing files. The figure shows an example menu and its corresponding hierarchy
of files.

Each panel is represented by a directory. Panels can be created and deleted
programmatically by making and removing such directories. They usually con-
tain two files: ctl and data (attributes for widgets and their data). Many wid-
gets include another file in their directories, named edits (a log of changes).
Grouping panels (e.g., rows) contain a subdirectory for each widget they con-
tain. Figure 3 shows a menu and the corresponding file tree. More widgets are
shown in figure 4.

To avoid confusion, we must emphasize once more that none of these files are
actual files on disk. The same happens with directories. They are synthesized
on demand by a file server program, which just happens to be the UIMS. That
is, they behave as files but are just an interface to the UIMS. Applications
perform operations, mainly read and write operations, over the virtual files
and directories to access and control the widgets. These virtual files can be
used locally or across the network, just like any other remote file system.

As shown in Figure 3, the name of a directory determines the type of panel it
represents. The figure depicts both col (columns) and button panels.

The data file contains an abstract and portable representation of the panel. It
contains plain text for text elements, compressed bitmaps for images, textual
representation of draw operations for vector graphics, textual representation
of a number between 0 and 100 for gauges, and so on. Data for a widget may
be updated by writing its data file, and retrieved by reading from it.

The ctl (control) file contains a textual representation of the panel attributes.
For example, a control file may contain “sel 5 100” to state that the text
selected in a text widget stands between the 5th and the 100th symbol (unicode
character). Another example is “font T”, which is a hint for viewers to show
text using a constant width (“teletype”) font. To permit selective updates of
individual attributes, the textual representation for an attribute may be used
as a control request by writing it to the control file.

The edits file, which is present on many panels, is a textual description of
changes made to a panel. This is particularly relevant to text panels and
derives (tags, labels, etc.). It is used to maintain a central representation of
the history of changes made to a panel. For example, it can be used to undo
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operations that were made on a previous session, after reopening it, perhaps
using a different terminal if the user has moved from one machine to another.

The exact details of the set of panels and the format for their data and at-
tributes may be found on the user’s manual [43]. Here we provide some exam-
ples to illustrate the overall scheme.

Fig. 4. An example screen running an O/live viewer.

This is the text found in the data file for the clock panel shown near the top
of Figure 4. Note how we can use the standard cat command (or, of course,
any other text editor) to read the widget state 5 :

term% cat /mnt/ui/appl/draw:clock.8623/data

fillellipse 40 40 35 35 back

ellipse 40 40 35 35

fillellipse 66 40 2 2 mback

... other fillellipse lines omitted ...

fillellipse 63 53 2 2 mback

line 40 40 14 34 0 2 1 bord

line 40 40 49 53 0 2 1 bord

fillellipse 40 40 3 3 bord

5 The UNIX command cat just writes the content of the file to its standard out-
put. In this example, and all other ones, we assume that the widget hierarchy been
mounted at /mnt/ui. term% is the prompt of the shell in the command-line exam-
ples.
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The widget contains textual vector graphics commands that may be inter-
preted by any (graphical) implementation of an O/live viewer. Using this file,
the clock application updates the data representation of the panel once per
minute.

Different types of widgets may use different data formats for their data files
(e.g., plain UTF text, textual vector graphics commands, etc.). Moreover, a
given type of widget may be designed either as a container or as an atom.
This is a choice that the widget developer must make. Formats shown in this
paper are just examples taken from our implementation for O/live.

The widget representation as a file system is up to the developer of the widget.
Thus, when adding a new type of widget, the developer can define its language,
that is, the data contained in the file(s) that represent the widget. For example,
a vector graphics widget could be designed as shown in the paper, or perhaps
as a hierarchy of other widgets (analogous to the XML representation of SVG).

These are the contents of the ctl file for the same panel:

tag

show

appl 0 8623

copyto main/row:stats

The first two lines are written (and known) by the application. They instruct
O/live to place a tag on the panel (the small square at the top-left corner,
which may be operated with the mouse, as discussed later) and to show the
panel (it might be hidden).

The third line in the ctl file is also written by the application to establish a
process id and a panel id on the panel. The former is used by the UIMS to
kill the application automatically if the last replica of the panel vanishes (e.g.,
after the user closes the last instance by using the mouse). The latter may be
used to quickly match an event to the panel involved (the name of the panel
may be used instead, but it is easier in many cases to rely on a small integer
value).

The last line replicates the panel on the main screen, within the row named
row:stats. Replication will be further explained in following sections.

External programs can be used to update these elements. For example, to
make the panel untagged, we can execute in a shell 6 :

term% echo notag > /mnt/ui/appl/draw:clock.8623/ctl

6 Echo is a UNIX command that just prints its arguments, while > redirects its
output to a file.
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The same task could be performed by a Python program:

outfile = open(’/mnt/ui/appl/draw:clock.8623/ctl’, ’w’)

outfile.write(’notag’)

outfile.close()

Error handling is omitted in the examples for clarity. Note that the file server
checks the validity of the data written to its virtual files. In case of error, the
system call returns an error and the program can deal with it appropriately.

By leveraging the file abstraction, there are many issues that become easily
solved. For example, widgets appear to be files and they have access control
lists attached that govern who can or can not operate on them.

Regarding concurrency control, file servers involved in O/live (described in
the next section) perform a file operation at a time. This means that client
programs may consider file operations as atomic. Also, it means that two
different (perhaps conflicting) requests are not concurrent. One of them will
be performed before the other, and the last one prevails.

As an example, it is customary for applications to create entire UIs first, and
then write a request to a ctl file to make the UI visible at a given screen (or
device). Because such a write is atomic, the entire UI can be set for viewing
in one or more viewers at once, without races.

When updating a data or control file, the implementation takes care of multi-
plexing requests from different clients (i.e., from different file descriptors). For
example, when updating a large image requiring multiple writes, the widget
state will not change before closing the file after writing it. Therefore, the
update is also atomic as far as clients are concerned. Should two programs
update concurrently the same image, one of them will win the race, but the
image will be consistent.

5 O/mero and the O/live viewer

O/live has been designed to address the issues discussed in the introduction.
Figure 5 depicts its architecture. Unlike most other UI systems, the system is
built out of two main programs:

• O/mero is the UIMS and provides a single, central, file system interface for
all widgets of interest. It is the heart of cooperative and distributed editing
and provides support for persistence of widgets across terminal reboots and
network partitions. O/mero is designed to be hosted in the cloud. This
means that this central point of control can be replicated to provide fault
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Fig. 5. Main processes involved in O/live: O/mero is the UIMS that keeps the central
state for widgets and orchestrates edit operations, and O/x is equivalent to a shell
and file browser for the system, including a command language. Components use
an event service, O/ports.

tolerance and availability as needed. This program is not to be confused
with Omero, an ancestor of O/live.

• O/live is a viewer for O/mero (and gives its name to the entire system). It
is responsible for all user interaction and it is the only program that knows
how to draw and how to process device input (e.g., mouse and keyboard).

This separation between the interface and the machinery for widgets goes back
to the Blit [44], a system that provided UIs for UNIX long ago. O/live may
be considered a late descendant.

There are two other components in the architecture: O/ports and O/x. O/ports
is an event delivery service used by the rest of components. Most of the time,
O/live is used in conjunction with O/x. O/x is a file browser, an editor, and a
shell to the underlying system. As far as O/live is concerned, it is an applica-
tion program. It is also in charge of a distributed editing command language,
and many applications rely on its services.

As Figure 5 shows, the application interacts only with O/mero using the file
interface like in all examples shown. Actual mouse, keyboard, and image pro-
cessing is performed only within O/live, which may execute close to the I/O
devices involved, perhaps overseas.

O/mero’s root directory contains a directory named appl used by applications
to create their UIs and operate them. For example, the clock discussed before
created a directory named draw:clock.8623, which is a vector graphics panel
because its name starts with “draw:”.

For example, our editor (O/x) does something similar to these shell commands
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to create the UI for editing a file with path "/name/of/the/file" 7 :

term% mkdir /mnt/ui/appl/col:edit1

term% mkdir /mnt/ui/appl/col:edit1/tag:fileinfo

term% echo /name/of/the/file > /mnt/ui/appl/col:edit1/tag:fileinfo/data

term% mkdir /mnt/ui/appl/col:edit1/text:edition

term% cat /name/of/the/file > /mnt/ui/appl/col:edit1/text:edition

The same example could be implemented in Python as shown. Note that this
Python program does not require any special library to do the job. It just uses
the standard module for file system operations.

import os

os.mkdir(’/mnt/ui/appl/col:edit1’)

os.mkdir(’/mnt/ui/appl/col:edit1/tag:fileinfo’)

outfile = open(’/mnt/ui/appl/col:edit1/tag:fileinfo/data’, ’w’)

outfile.write(’/name/of/the/file’)

outfile.close()

os.mkdir(’/mnt/ui/appl/col:edit1/text:edition’)

outfile = open(’/mnt/ui/appl/col:edit1/text:edition’, ’w’)

infile = open(’/name/of/the/file’, ’r’)

for line in infile:

outfile.write(line)

infile.close()

outfile.close()

The application is free to adjust its UI and, once ready, replicate it on any
screen. By convention, the application replicates its UI in the same screen in
which it has been run. Note that this is similar to asking an UI toolkit to show
it, and does not require the application to be aware of replication facilities.

The user may change things later in this respect and move and/or relocate
any panel (that has a tag). For example, to make our new panels available on
the first column of the row used for windows in the main screen, our editor
would perform the equivalent of this:

term% echo copyto main/row:wins/col:1 > /mnt/ui/appl/col:edit1/ctl

The same program in Python would be:

import os

outfile = open(’/mnt/ui/appl/col:edit1/ctl’, ’w’)

outfile.write(’copyto main/row:wins/col:1’)

outfile.close()

O/mero processes this request by making the col:edit1 panel (the file tree

7 The UNIX command mkdir creates a directory in the specified path.
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rooted at this directory) also available in the main/row:wins/col:1 directory
(within the O/mero file tree). Note that the state for the UI is kept in a
single data structure maintained by O/mero. However, this UI now appears
to be present at two different places: main/row:wins/col:1/col:edit1 and
appl/col:edit1. This is depicted in figure 6.

Fig. 6. Copyto replicates a widget subtree, used to show it on a screen.

O/live is started by giving it the path to a screen (or session) that must be
shown. For example, executing it with “main” as an argument would make it
show all panels within /mnt/ui/main, including our new example panels.

Should the user want, a new screen may be instantiated by creating a new
directory in the top-level directory of O/mero. Previously existing panels may
be also replicated on it. For example:

term% mkdir /mnt/ui/another

term% echo copyto another/row:wins/col:1 > /mnt/ui/appl/col:edit1/ctl

Or, in Python:

import os

os.mkdir(’/mnt/ui/another’)

outfile = open(’/mnt/ui/appl/col:edit1/ctl’, ’w’)

outfile.write(’copyto another/row:wins/col:1’)

outfile.close()

The first command creates a set of panels that conforms the initial layout
for a new screen (including a row to contain windows and one or several
columns within). The second creates a new replica for our example panels. We
have replicated the entire UI element tree that was created by our example.
Instead, we might have replicated only a part, by writing to the control file of
the directory representing the sub-tree of interest. It is typical to replicate a
single button, for example, to make it available on different screens without
carrying along the rest of the application’s UI.
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In the scenario described in the introduction, the UI tree of the video player
application would be replicated from the laptop of the user to the media player
screen using this. In contrast, only the buttons to play and stop would be
replicated to the smartphone screen, making it act as a remote control for the
video player. Given the arbitrary decomposition and replication given by this
approach, programs can choose what parts of the interface replicate where and
this can be changed after the application is programmed by developing new
external commands, or directly by advanced users to test new ideas, providing
very low viscosity.

As another example, this can be used to delete our panels in the C program-
ming language as used on the Plan 9 OS 8 :

if(remove("/mnt/ui/appl/col:edit1") < 0)

fprint(2, "remove failed with error status %r");

The important point here is that applications operate on files, unaware of
how many replicas there are, and ignorant for the most part of how are panels
going to be depicted on the different screens 9 .

On the other hand, O/live (our viewer) is the only one who cares about how
to render panels. The same holds for input devices but, before getting into
details of input processing, we must discuss event handling.

The decoupling of O/live (viewer) from O/mero enables a N:M relationship
between them, unlike in systems such as Omero [6]. For example, one O/mero
can serve the widgets to several, multimodal viewers (i.e., to different O/lives).
Also, a viewer can combine different O/meros to create a mash-up of more
than one application; to do so, it only has to use files from different O/meros.

5.1 Events and clipboards

Most components use event channels, provided by a service named O/ports.
O/mero uses this event service to post events for both applications and UI
viewers (i.e., O/lives). O/live does not directly post events. Instead, it writes
control requests to O/ports and it is O/ports the one that notifies interested
parties of any event.

Following the O/live design guidelines, O/ports is actually a file server pro-
gram. The event service is represented as a directory where files may be cre-
ated, read, and written. Initially, the directory contains a single file, post,

8 This code just removes the file with the given path and in case of error prints a
message on the standard error output
9 Refer to demo number 2 at [45].
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used to post events. Data written to that file is posted to any event channel
interested on it. All other files represent event channels.

O/ports is similar to the Plan 9 event dispatcher, Plumber [46], but better
suited to dynamic distributed environments (listeners may come and go and
event channels are created atomically).

When a program wants to create an event channel and set it up, it suffices for
it to create a file on the directory (conventionally mounted at /mnt/ports)
and then write a regular expression. From this point on, all events with data
matching the regular expression will be delivered to the channel. Any further
read operation on the file blocks until an event is posted (with data that
matches the expression) and then completes conveying the data for the event.
Therefore, the reading thread blocks until a matching event is received, but
it is trivial to wrap this interface to provide asynchronous event handling if
needed.

For example, suppose that some applications need to notify other applications
when they save a document. This could be done by posting an event like
“saved:/tmp/c.txt”. To create a listening channel, we could execute this
shell command:

term% echo ’^saved:.*’ >/mnt/ports/savedfiles

Any application interested in such an event should read from this file. To
further elaborate this example, the following C function can be used by an
application to notify other applications that a file has been saved:

void

postsaveevent(char *filename)

{

int fd;

char data[Maxmsg];

fd=open("/mnt/ports/post", O_WRONLY);

snprintf(data, Maxmsg, "saved:%s", filename);

write(fd, data, strlen(data));

close(fd);

}

or, equivalently in Python:

def postsaveevent(filename):

outfile = open(’/mnt/ports/post’, ’w’)

outfile.write(filename)

outfile.close()
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An example of how event delivery would work in this case is depicted in figure 7

Fig. 7. Event matching example.

Let’s now consider (user) focus change events in O/live. When the user estab-
lishes the input focus on a panel (by placing the mouse on it), O/live notifies
O/mero by writing a “focus” request on the panel’s ctl file, and O/mero
posts an event. As an aside, this event indicates that the user is focusing on
that UI element, which might have nothing to do with the mouse, perhaps the
user relied on voice commands or used a keyboard instead. We can retrieve
focus events by creating an event channel, programming it, and then reading
from it. For example, we can see focus events involving the panels of the editor
(O/x) as shown next.

term% echo ’o/mero:.*/col:ox.* focus’ >/mnt/ports/focus

term% cat /mnt/ports/focus

o/mero: /appl/col:ox.187/col:ox.ffffd49c/text:file.14 14 focus

o/mero: /appl/col:ox.187/col:ox.ffffb286/text:file.157 157 focus

...more output whenever the focus changes...
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The first command both creates the focus port and programs it to retrieve
events matching the ones of interest. The second command writes new events
to standard output as they arrive.

In the example scenario presented in the introduction section, the presenta-
tion application would listen to events representing that the user pressed the
button to play the video. Pressing a replica of this button, for example in the
phone, would post an event using ports to the application. The application
would be listening to events which could be for example, strings matching the
regular expression “.*button:Play”. In order to do this, it would create a file
representing the regular expression as described above and start reading from
it. When a button is pressed, the application thread reading from this file
would unblock receive the string and start playing the video. As long as all
the applications (video presenter, room control), all share the same ports file
system, events will be delivered as needed.

Note how, again, external programs may listen for events regarding the UI of
any application without disrupting the operation of the application and with-
out application support. Also, no special purpose tools are required; ancient
tools such as cat and echo suffice to handle events programmatically. If this
is a security concern, file permissions can be changed for event channel files.

O/live uses a per-user file called snarf as the clipboard. Another per-user
file, sel, contains the path for the panel (in the O/mero file tree) where the
selection was made. This is a helper for implementing external commands that
operate on selected text regions.

The snarf file contains a copy of the user’s clipboard. When data is copied to
the clipboard, an event is posted. This event is used to update the clipboard
on different machines also employed by the user. As a result, we are able to cut
some data at a computer, go to a near office, and paste it there on a different
O/live.

The full list of events is described in the O/mero manual found in section 4 of
[43]. By convention, an event consists of the name of the program posting it,
the identifier and path for the panel causing it, a word identifying the event
type, and some free form data.

Most events are abstract and not directly related to mouse/keyboard input.
There are events notifying that the user started to make changes on a panel,
that a panel was deleted (usually using the mouse), etc. The most important
events are look and exec, meaning that the user is looking for something
(perhaps wants to search text or to open a new file, depending on the panel)
and that the user wants to perform some task (perhaps it was a button push
or a command was typed, depending on the panel). There are also low-level
events named click and keys to report raw pointing device and keyboard
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activity, for the rare cases where the abstract events are not enough.

5.2 Cooperative and distributed editing

What has been stated suffices to roughly understand how applications interact
with O/mero. However, the interaction between O/mero and O/live deserves
more explanation. As suggested in figure 5, there may be multiple O/live
instances attached to the same O/mero. In fact, that is the case when multiple
machines are being used to deploy user interfaces. Usually, there is one O/live
per display available (we are referring to the graphical implementation of
O/live).

Depending on the user preference, different O/lives may be displaying different
“screens” (different file subtrees in /mnt/ui, siblings of the appl directory),
or they might be displaying the same one. This is similar to maintaining
different VNC sessions and then using different VNC clients to dial either
different sessions or the same one. But the similarity ends there.

Edit operations happen within O/live. For example, an editable text panel im-
plements typical editing facilities within O/live, and notifies O/mero only of
text insertions, removals, dirty or clean status change (i.e., unsaved changes),
etc. All mouse and keyboard interaction is processed locally, and abstract
events are sent from O/live to O/mero, possibly leading to events for the
application. The same happens for any kind of interaction with O/live. A con-
sequence of this scheme is that the network link between O/live and O/mero
may have high latency (e.g., WAN and 3G networks). The authors have suc-
cessfully used O/live instances running in America and Australia connected
to O/meros running in Europe. By successfully we mean that they were used
to perform tasks like writting this paper or debugging the system, without
noticing any difference with respect to using it from our laboratory.

In addition, our implementation can be used in conjunction with a network
file system protocol designed for high latency links, Op [47], which minimizes
the number of round-trip messages involved in file system operations. The Op
protocol is out of the scope of this paper and it is described elsewhere [47].
Nevertheless, O/live does not depend on a specific file system protocol. Files
can be accessed and reexported using any network file system protocol, such
as WebDAV or Styx, but latency can be an issue in that case. For interaction
among multiple operating systems or whenever it is convenient, other network
file system protocols can be used. Note that O/Live works well either when
there is only one user simultaneously using the UI, or when all the users simul-
taneously manipulating it are connected with low latency to the application.
When these requirements are not met, different users may interfere with each
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other. In the end, there is no magic: updates take time to cross the network.

All notifications from O/live to O/mero are done through the data or ctl

files of the panels. O/mero processes the request(s) and then notifies involved
parties (i.e., applications and other O/lives using the same tree).

O/mero notifies the different instances of O/live of changes to panels by send-
ing notifications whenever a file changes. When O/live receives such notifi-
cations, it updates the panels affected. For example, as text is inserted and
removed on a text panel, O/live would send ins and del events by writing
control requests to the panel on its ctl file. Then, O/mero would update the
panel, and notify other O/lives of the insertion/removal or text. They would
update their contents accordingly.

The same approach can be followed to implement other types of widgets that
control big sets of elements (e.g., lists or tables with thousands of entries or
rows) or viewers for devices no able to cache data. Note that the viewers are
able to only read the portion of data they are showing. The viewers retrieve
the data of the widget from a (synthesized) file. Therefore, they can seek the
file and read only the desired segment of data (i.e., the data they are showing).
Note that refreshing and layout and size calculations are managed locally to
the viewer, and so, in this respect, the limits of our approach are those of a
traditional user interface.

When there is an enormous quantity of data to be viewed, and a local cache (in
the application) is not feasible, the application needs to know which fragments
of data are shown in the viewers (in order to only retrieve these portions from
the data source). Although we currently do not support this scenario, it could
be supported easily. The viewers would write a command in the control file
of the widget to specify the portion of data they are showing. Then, O/mero
would be able to send an event to the application specifying the portions of
data that have to be loaded in the widget. In addition, an extra attribute would
be included in the widget to allow the application to get this information on
demand. This way, the application would be able to retrieve the data from the
source and load it in the widget. Note that, in this case, the data file of the
widget would be similar to a sparse file. Our current implementation does not
support this scenario for two reasons. First, we have not needed it. Second,
we aim at decoupling the application from UI as much as possible.

For consistency, each panel is assumed to have a version number, which is
incremented whenever a change is made to it. Requests to update a panel
must supply as an argument the version of the panel before making the change.
If the version matches, it means that no other party has modified the panel
meanwhile, and the change is made and updates are posted to others. If the
version does not match, it was a concurrent edit. In that case, O/mero responds
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with an error to the write request (used to write the control file) and O/live
(or whoever made the request) learns that it was a concurrent edit.

In our current implementation we discard a concurrent edit when it happens.
The approach taken by O/mero and O/live is not to provide failure trans-
parency (i.e., not to resolve conflicts internally when they happen).

If conflicts are rare, it may be fine for the user to type again the tiny text
involved in the conflict (in the case of a text panel, it may be a few words).
An alternative would be to retry after waiting for the concurrent change that
arrived first to O/mero (and made our request fail because its version was not
current). Because our implementation does not do that, if there are multiple
users editing concurrently and the latency is high, there will be problems. In
the case when there is both low latency and an external channel to arbitrate
conflicts, the current implementation works well. For example, a group of
people in a meeting with private screens (e.g., laptops) and a video wall might
talk to each other to resolve conflicts.

O/live is well suited for the two cases it has been designed for: (i) a group
of well connected users sharing a common smart space and (ii) a single user
using multiple interfaces from local or/and remote locations. In the second
case, because there is a single agent using the system, there is no possibility
of conflict. Even in that case, there may be several active viewers at the same
time at different remote locations.

5.3 Building applications in O/live

It is quite easy to build regular applications using O/live for the interface.
Applications only need to create and delete directories, read and write from
files and in general interact through the file system with their UI, which they
perceive as a single copy.

For example, an application to control the lights of the room 134 which is
part of the scenario described in the introduction, would create a button to
turn on and off the lights. In order to do this, it has to create the appropriate
directory first representing the button with a name like:

/mnt/ui/appl/button:light.2342

Note that the last number is just a random number to prevent clashes. Then
a string like ‘‘appl 34 464’’ has to be written to the file:

/mnt/ui/appl/button:light_room134.2342/ctl

This string identifies this particular panel and that it belongs to this appli-

27



cation instance. Writing the string ‘‘copyto screen1/col:1’’ would make
the button appear on this screen.

Finally a file would be created in /mnt/ports/panelname to receive the events
that will be generated for the button. In order to redirect the events to this
file, the string ‘‘o/mero: /appl/button:light.2342.*’’ would be written
to this file. Finally, the application would be in a loop reading from this file.
Whenever the read unblocks, the application would turn the lights off and on.

A smart room controller as the one described in the intro would simply create
a container. Then it would (again creating a directory) scan all the button
directories contained in /mnt/ui looking for the string with the room name
and replicate them on the container. This can be done in a simple script or in
any programming language without problems as we show in section 7.

The permissions of the files created by the user interface control what the
users can do with it. For example, imagine the ctl file for the button described
before has read permission for the public, and write permission just for the
owner. This means that anyone can check whether the lights are on but just
the owner of the file (which may be the owner of the room) might turn them
on and off.

Of course, for more complex applications, a small library can wrap the file sys-
tem operations (which we in fact wrote for C and Limbo) to make dealing with
the widgets more convenient. Nevertheless, the main infrastructure to create
and deal with files is already present in almost any programming language.
This library can look like a normal widget library (for example, GTK+[48])
to the application programmer.

6 Using O/live

This section describes our viewer implementation. It should give an idea of the
capabilities of O/live. The specific GUI we have implemented is suitable for
advanced programmers, but it is trivial to develop a simple WIMP 10 viewer
for the same architecture. Such viewer can be programmed with any toolkit
available (e.g., GTK [49]), and there is no need to reimplement the set of
widgets.

The mode of interaction and the look and feel of O/live are very similar to that
of Acme [7] and Omero [6], which can be considered its direct ancestors. An
example screen is shown in figure 4. The interaction is based on the intensive
usage of pointing devices. These devices are supposed to have at least two

10 Window Icon Menu Pointer GUIs such as MS Windows.
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(virtual or real) buttons. For instance, on electronic whiteboards, each pen
color is considered as a different mouse button. This permits users to use
different pens to perform different actions. Likewise, in multitouch devices,
different gestures can be interpreted as different buttons.

The interaction with the mouse and the keyboard happens within O/live,
without the intervention of the application. Therefore, most text editing and
mouse actions are handled by O/live, and consequently any editing feels the
same (no matter what the application is).

For example, applications specify whether panels can be individually handled
by users (e.g., using the mouse) or not. Viewers (and applications) specify
whether panel data is considered dirty (edited, not yet written to wherever the
application wants to save the changes) or not. Applications remain unaware
of what this means regarding mouse and keyboard handling and unaware of
how to represent dirty or clean data. Different versions of O/live may be
implemented to provide the same look and feel for the user, independently of
applications.

In our implementation of O/live, by default, rows and columns have tags and
atoms do not. This can be changed through the file system interface. The
tag permits certain mouse operations in the panel, and provides information
about the data shown on it. When a panel has hidden panels within it, its tag
is shown as a vertical rectangle instead of a square box. A panel may be in a
dirty state, when the application using it considers that it has unsaved state.
In this case, the tag is shown in a light yellow color (and so are shown the
tags of all panels containing the one in a dirty state).

7 UI Programmability

The file system like interface implemented by O/mero together with the con-
ventions used by O/x and other programs to name the files that implement
their UIs, makes it easy to program operations on the UI themselves.

The following example script tells the user if she is editing any file or browsing
any directory under /lib. First, it finds all the files representing the tags from
the UI. By convention, the tags contain the names for the files being edited.
Note that the tag is similar to the title bar in other window systems. Then,
it matches the path with the beginning of the file, using a simple regular
expression:

# Use du to list the trees in o/mero (/mnt/*ui).

# Put in $tagfiles the paths for the data file of all tag panels.
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tagfiles=‘{du -a /mnt/*ui | grep ’tag:.*/data’ | awk ’{print $2}’}

if(grep -s ’^/lib/’ $tagfiles){

echo ’editing files under /lib’

}

The same example in Python:

import os, re

# List all the files under path

def du(path):

fnames = []

for(dirpath, dirnames, filenames) in os.walk(path):

for fname in filenames:

compfname = os.path.join(dirpath, fname)

fnames.append(compfname)

return fnames

path=’/mnt/ui’

for fname in du(path):

if(re.search(’tag:.*/data’, fname)):

tagfname = fname

for line in open(tagfname):

if re.search(’^/lib/’, line):

print ’editing files under /lib’

break

Examples are countless: tar 11 and echo can be used to copy interfaces, rm
can be used to remove them, ls can list the panels used, chown 12 can be used
to donate screen space, iostats (a file system I/O statistics tool) can report
statistics on UI usage (as it would do with any other file tree), etc.

7.1 A distributed Sam command language

Another new idea in O/live is the use of a command language for program-
mers 13 , adapted from the Sam [8] editor, to operate on distributed user in-
terfaces. The Sam language plays a similar role than the editing languages
used in other UNIX editors like vi or ed. Because all widgets are known to
O/mero, independently of their representation, distribution and replication,
it is feasible to employ a single command language to handle all of them in a

11 tar is a command which serializes/deserializes file tree trees in UNIX. WinZip
could be used to the same effect in Windows.
12 chown changes the owner of a file in UNIX.
13 Refer to demo number 4 at [45].
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similar way Sam handles local resources.

The particular syntax and semantics of the language are not relevant (and
are not discussed here). What matters is that the architecture enables its
implementation and makes it as simple as it would be for a single, centralized,
text editor. It is not a coincidence that the O/live language is indeed a port
of the Sam command language (a text editor on Plan 9), but operating now
on a distributed set of machines and devices.

For example, this command removes all panels showing C source files from all
the (distributed) screens employed by the user; some of the screens involved
might be overseas!

X/\.[ch]$/D

It may seem cryptic, but it means: for all panels (“X”) whose tag lines end in
“.c” or “.h”, delete (“D”) them.

This command is also an example of how the different elements in the ar-
chitecture work together. The user types the command at the terminal using
O/live, and such editing happens locally. When return is pressed (or the mouse
is used) to execute it, O/live posts an event using O/ports to notify others
that the user wants to execute “X/\.[ch]$/D”. Neither O/live nor O/ports
nor many others know the meaning of the command. For them it is just a text
executed by the user. O/x is listening for execute events and honors them.
In this case, O/x relies on the file hierarchy (provided by O/mero) to locate
files that correspond to widgets and do its job: locating text editing widgets
for files with names ending in .c or .h and, for each one, writing requests to
delete them.

The language can be used to automate editing (like in Sam), but it includes
new loop constructs that operate on panels distributed among the machines
used for I/O. It also includes new commands to reclaim panels (copy them)
to the screen where the command is issued.

For example, “P/main.*:cmds/e” can be used to copy all panels named “cmds”
(usually command buttons) found on the, so called, “main” screen of the user,
into the screen where the command is typed. This may be used to establish
a replica for all such buttons into a single place immediately. In the example
described in the introduction, instead of a special smart room controller

In general, it is feasible by typing a similar command to select a subset of
the panels by a regular expression, and then to operate on them to perform
automated editing, to change their attributes, or to close or move or replicate
them.
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To the best of our knowledge, the power provided by this command language
within O/live has no match in other UIMS and/or window systems found on
the literature. At least, when considering that it operates on all panels, no
matter where they are.

The most usual task addressed by this feature is to save, close, or collect
widgets from applications that were left running at different sessions before
continuing work at a different place.

7.2 Multimodal interfaces

To develop a new kind of viewer, neither the application nor O/mero have to
be modified. The viewer only has to access the abstract widgets and adapt
them to the new interaction. This is similar to what XWeb [33] does.

A prototype voice command system, that we have built for Plan B [50], is a
good example of how the programmability of the environment makes things
easier. The voice command system accepts commands to press arbitrary but-
tons shown in the devices surrounding the user. This “system” is actually a
shell script, written with a few shell command lines.

The script takes the text resulting from speech processing and scans for sen-
tences like “press stop”. At that point, du, is used like in the script shown
above to find buttons that contain the word of interest (e.g., “stop”), and a
write to the button control file instructs O/mero to simulate an exec on it.

Note how the applications owning the panels affected may run unaware of
any of the external programs used on them. No code has to be included in
the applications to provide support for these commands, because all that is
needed is already provided by the environment.

In a similar way, it is simple to develop viewers (similar to O/live) for text
editing that accept dictation and synthesize voice for hands-free interaction
(the viewer may translate voice to text and update the data file for the panel
involved). There are many other examples that we omit for brevity.

This prototype system, along with using O/lives with radically different screen
sizes (from phone-sized displays to wall mounted ones), permitted us to test
if the approach could work well with highly heterogeneous I/O devices or not.
It did work well. However, we have to say that only a full viewer has been
implemented for graphics devices, the one being used to write this.
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8 Experience

Overall, we are satisfied with the environment. Most of the applications we
use for daily work have been ported to O/live, or rewritten to exploit its
benefits. This includes simple tools like clocks and statistics meters, and also
more complex programs like mail readers, audio players, image viewers, several
simple games, and some other tools.

When used on several machines close by, O/live and O/mero integrate nicely
with facilities to redirect mouse and keyboard devices to different machines.
Our users are accustomed to copy O/live panels at one machine, then redirect
(pressing a button) the mouse and keyboard to another machine, and then
paste the panels there.

When the machines are not nearby, the facilities of O/live remain the same.
In fact, we are accustomed to employ machines at different locations that
feel exactly like part of the same environment, and it seems to us that our
“sessions” are always available no matter the devices we use.

The ability to operate on individual panels, independently of which applica-
tion they belong to, and to re-group them as desired into another panel, has
proven to be invaluable to save screen space on machines with very small
screens. For example, screens of hand-held devices can be used to hold just
the indispensable controls needed by the user.

The performance of O/live and O/mero seems reasonable to provide user
interfaces, as our experience using it for daily work during the past few years
confirms. By reasonable performance we mean that the system reacts to the
user in what is perceived to be instantaneous time and she can forget about the
underlying mechanisms. Most of the latency in the interaction comes from the
series of RPCs generated by the underlying system to satisfy the file system
calls made by the application. Once this latency is minimized by keeping the
number of roundtrips low and hidden by containing the interaction in the
viewer, the time to update the screen seems to be the dominant factor, as it
could be expected. We had to take care of the number of refreshes to make
the system responsive enough to be useful.

The experience using a concrete implementation of the architecture, together
with the experience iterating with different versions of the viewers porting
various applications written in different languages (C, Limbo and shell script
mostly) to it and using it, is the best way we know to validate a radically
new architectural approach like this. Of course, we could add more viewers of
different kinds and port them to different systems, but as it is, we have proved
that the approach is sound and fundamentally works and we have built an
environment we are comfortable working in.
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The proposed architectural approach is, of course, not without limitations. It
is not suitable for some kind of applications, such as complex video games.
The main problem is that these applications are highly interactive and need
intensive, low level graphic control. Nevertheless, this approach works well for
most conventional applications. Some applications, like web browsers, appear
to be in the same category as video games, but this is not the case. Note that
in many toolkits there is a browser widget that embeds a browser panel. It
would be easy to abstract this widget for our architecture. The state to be
kept in O/mero for such a widget would be modest (urls, cookies, passwords,
and so on). In this case, the viewer takes care of all the browser interaction,
and HTML fetching and rendering. In this implementation, O/mero would
not keep any HTML code or graphical state. Something similar would happen
with video widgets. The state kept in O/mero would be also minimal (video
source, elapsed time, audio track selection, playing status, and so on).

9 Conclusions

To conclude, the key contributions of this work are: (i) the idea of using syn-
thetic files to decouple user interaction from the interface state; (ii) the idea of
using synthetic files to decouple the application from its interface state; (iii) a
deep approach revisiting how an architecture for UIMSs is built based on the
previous two ideas. This architecture is application and language agnostic and
supports: integration of distributed I/O devices, combination of highly hetero-
geneous devices, replication and rearrangement of widgets, and programmatic
interfaces for distributed UIs, properties all which; (iv) the description of a
working implementation of such architecture and how it enables low viscosity;
(v) the report of lessons learned during several years of experience as users of
this system.

As future work we are exploring how to use this technology for legacy applica-
tions that use conventional toolkits on UNIX and Windows systems to make
them believe that they continue to use their UI toolkits, yet make them rely
on O/live and O/mero instead. This would provide legacy applications with
the same flexibility introduced by our approach. Our current strategy is to
intercept calls to their dynamic libraries, to avoid the need for recompiling
them. But it is too early to know if this future work will succeed or not.

References

[1] H. Merz, T. Hansemann, C. Houbner, Building automation: communication
systems with EIB/KNX LON and BACnet, Springer Verlag, 2009.

34



[2] D. Merrill, J. Kalanithi, P. Maes, Siftables: towards sensor network user
interfaces, in: Proceedings of the 1st international conference on Tangible and
embedded interaction, ACM, 2007, pp. 75–78.

[3] T. Gjerlufsen, C. Klokmose, J. Eagan, C. Pillias, M. Beaudouin-Lafon, Shared
substance: developing flexible multi-surface applications, in: Proceedings of the
2011 annual conference on Human factors in computing systems, ACM, 2011,
pp. 3383–3392.

[4] J. Gettys, Snap computing and the x window system, Linux Symposium (2005)
113.

[5] W. Edwards, M. Newman, E. Poole, The infrastructure problem in hci, in:
Proceedings of the 28th international conference on Human factors in computing
systems, ACM, 2010, pp. 423–432.

[6] F. J. Ballesteros, G. Guardiola, K. L. Algara, E. Soriano, Omero: Ubiquitous
user interfaces in the plan b operating system, IEEE PerCom.

[7] R. Pike, Acme: A user interface for programmers, Proceedings for the Winter
USENIX Conference (1994) 223–234.

[8] R. Pike, The text editor sam, Software, Practice, and Experience 17 (11) (1987)
813–845.

[9] R. Pike, D. Ritchie, The styx architecture for distributed systems, Bell Labs
Technical Journal 4 (2) (1999) 146–152.

[10] J. I. Maloney, R. B. Smith, Directness and liveness in the morphic user interface
construction environment, Proceedings of the 8th annual ACM symposium on
User interface and software technology (1995) 21–28.

[11] R. Pike, 8 1/2, the plan 9 window system, Proceedings for the Summer USENIX
Conference (1991) 257–265.

[12] T. Richardson, Q. Stafford-Fraser, K. R. Wood, A. Hoppe, Virtual network
computing, IEEE Internet Computing 2 (1) (1998) 33–38.

[13] G. Wallace, K. Li, Virtually shared displays and user input devices, in: 2007
USENIX Annual Technical Conference on Proceedings of the USENIX Annual
Technical Conference, USENIX Association, 2007, pp. 1–6.

[14] J. Rekimoto, Pick-and-drop: a direct manipulation technique for multiple
computer environments, in: Proceedings of the 10th annual ACM symposium
on User interface software and technology, ACM, 1997, pp. 31–39.

[15] J. Rekimoto, M. Saitoh, Augmented surfaces: a spatially continuous work space
for hybrid computing environments, in: Proceedings of the SIGCHI conference
on Human factors in computing systems: the CHI is the limit, ACM, 1999, pp.
378–385.

[16] K. Hinckley, G. Ramos, F. Guimbretiere, P. Baudisch, M. Smith, Stitching: pen
gestures that span multiple displays, in: Proceedings of the working conference
on Advanced visual interfaces, ACM, 2004, pp. 23–31.

35



[17] M. Newman, S. Izadi, W. Edwards, J. Sedivy, T. Smith, User interfaces when
and where they are needed: an infrastructure for recombinant computing, in:
Proceedings of the 15th annual ACM symposium on User interface software
and technology, ACM, 2002, pp. 171–180.

[18] P. Homburg, L. Van Doorn, M. Van Steen, A. Tanenbaum, W. De Jonge, An
object model for flexible distributed systems, Vrije Universiteit.

[19] R. Grimm, One.world: Experiences with a pervasive computing architecture,
IEEE Pervasive Computing (2004) 22–30.

[20] K. Luyten, K. Coninx, An XML-based runtime user interface description
language for mobile computing devices, Interactive Systems: Design,
Specification, and Verification (2001) 1–15.

[21] J. Nichols, B. Myers, K. Litwack, J. H. a. H. M. Higgins, Describing appliance
user interfaces abstractly with xml, Workshop on Developing User Interfaces
with XML: Advances on User Interface Description Languages.

[22] T. Hodes, R. Katz, Enabling Smart Spaces: Entity Description and User
Interface Generation for a Heterogeneous Component-Based Distributed
System, 1998.

[23] T. Browne, Using declarative descriptions to model user interfaces with
mastermind.

[24] G. Zimmermann, G. Vanderheiden, A. Gilman, Universal remote console
prototyping of an emerging xml based alternate user interface access standard,
in: Eleventh International World Wide Web Conference, 2002, pp. 7–11.

[25] R. Merrick, Auiml: An xml vocabulary for describing user interfaces.[device
independent user interfaces in xml] (2001).

[26] Q. Limbourg, J. Vanderdonckt, B. Michotte, L. Bouillon, M. Florins,
D. Trevisan, Usixml: A user interface description language for context-
sensitive user interfaces, in: Proceedings of the ACM AVI’2004 Workshop”
Developing User Interfaces with XML: Advances on User Interface Description
Languages”(Gallipoli, May 25, 2004), Luyten, K., M. Abrams, Limbourg, Q.,
Vanderdonckt, J.(Eds.), Gallipoli, Citeseer, 2004, pp. 55–62.

[27] J. Plomp, R. Schaefer, W. Mueller, H. Yli-Nikkola, Comparing transcoding tools
for use with a generic user interface format, in: Proceedings of extreme markup
languages, Vol. 10, Citeseer, 2002.

[28] N. Souchon, J. Vanderdonckt, A review of xml-compliant user interface
description languages, Interactive Systems. Design, Specification, and
Verification (2003) 391–401.

[29] K. Gajos, D. S. Weld, Supple: automatically generating user interfaces, in:
Proceedings of the 9th international conference on Intelligent user interfaces,
IUI ’04, ACM, New York, NY, USA, 2004, pp. 93–100.

36
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