
A Measurement-based Characterization of the
Energy Consumption in Data Center Servers

Jordi Arjona Aroca, Angelos Chatzipapas, Antonio Fernández Anta, and Vincenzo Mancuso

Abstract—In this work we present an exhaustive empirical
characterization of the power requirements of multiple components
of data center servers. To do so, we devise different experiments to
stress these components, taking into account the multiple available
frequencies and the fact that we are working with multicore servers.
In these experiments, we measure energy consumption of server
components and identify their optimal operational points. Our study
proves that the curve defining the minimal CPU power utilization,
as a function of the load in Active Cycles Per Second, is neither
concave nor purely convex. Instead, it definitively shows a super-
linear dependence on the load. Similarly, we present results on
how to improve the efficiency of network cards and disks. Finally,
we validate the accuracy of the model derived from our characte-
rization by comparing the real energy consumed by two Hadoop
applications—PageRank and WordCount—with the estimation from
our model, obtaining errors below 4.1% on average.

Index Terms—Cloud Computing, CPU, data centers, disk,
DVFS, energy efficiency, energy measurements, network

I. INTRODUCTION

Cloud computing represents the possibility of outsourcing
our computational services without incurring amortization
costs, scaling up or down the required resources to match
the current demand, and in a pay-as-you-go way. However,
the cloud has to be physically deployed somewhere. To this
purpose we require data centers. Indeed, cloud computing
is the main reason why the number of data centers built or
being built has skyrocketed during the last years. However,
the advantages of cloud computing come at a cost, the huge
amount of energy data centers consume yearly. In particular,
according to the most recent estimations [1], data centers’
total energy consumption in 2012 was about 270 TWh,
which corresponds to roughly 2% of the global electricity
consumption, with an approximated annual growth rate of
4.3%.

In this article, we concentrate on the characterization of
data center servers’ energy consumption. Indeed, in order to
obtain full benefit of energy efficient techniques proposed in
the literature [2], [3], it is crucial to profile the utilization
of the data center servers’ components. Moreover, it is
necessary to understand the energy consumption of servers
and how it is affected by different load configurations. There
is a large body of work on characterizing servers’ energy
consumption. However, the existing literature does not jointly

J. Arjona Aroca is with University Carlos III of Madrid, Spain; A.
Chatzipapas, is with IMDEA Networks Institute, Madrid, Spain, and Uni-
versity Carlos III of Madrid, Spain; A. Fernándes Anta and V. Mancuso
are with IMDEA Networks Institute, Madrid, Spain. e-mail: {jorge.arjona,
angelos.chatzipapas, vincenzo.mancuso, antonio.fernandez}@imdea.org

This research was partially supported by the Madrid Regional Govern-
ment (CM) through the grant Cloud4BigData (S2013/ICE- 2894, cofunded
by FSE & FEDER) and by the Spanish Ministry of Economy and Compet-
itiveness with grant HyperAdapt (TEC2014- 55713-R).

consider phenomena like the irruption of multicore servers
and dynamic voltage and frequency scaling (DVFS) [4],
which are key to achieve scalability and flexibility in the
architecture of a server. Therefore, more complex/complete
models which study the energy consumed by a server are
needed. To be consistent, these models have to be based on
empirical values. However, we found that there is a lack of
empirical works studying servers’ energy behavior.

Contributions and main results: Our contribution is
threefold: (i) we propose a methodology to empirically
characterize the energy consumption of a server, (ii) we
provide novel, experimental-based, insights on the power
consumption of the components that contribute the most to
the server’s power consumption, and (iii) we propose an
accurate technique to estimate the energy consumption of
cloud applications.

As concerns the methodology, we observe that active CPU
cycles per second (ACPS) is a convenient metric of CPU
(central processing unit) load in multi-core/multi-frequency
architectures. We show how to isolate the contribution of
energy consumption due to CPU, disk I/O operations, and
network activity by just measuring server’s total energy
consumption and a few activity indicators reported by the
operating system. We also show that the baseline energy
consumption of a server — i.e., the energy consumed just
because the server is turned on — has a strong impact on
server’s total consumption.

As concerns the components’ energy characterization, we
show that, besides the baseline consumption, the CPU has
the largest impact among all components, and its energy
consumption is not linear with the load. Disk I/O operations
are the second highest cause of consumption, and their
efficiency is strongly affected by the I/O block size used by
the application. Eventually, network activity plays a minor
yet not negligible role in the energy consumption, and the
network impact scales almost linearly with the network
transmission rate. All other components (e.g., memory, fans,
GPU, etc.) can be accounted for the baseline energy consum-
ption, which is subject to minor variations under different
operational conditions. Specifically, the main results of our
measurement campaign are listed below:

• The CPU power utilization depends on the number of
working cores, the CPU frequency, and the CPU load (in
ACPS units). Our measurements confirm that the energy
consumption with a single working core at constant fre-
quency can be closely approximated by a linear function
of the CPU load. However, given a CPU frequency, the
energy consumption in multicore architectures is a concave
function of the CPU load and can be approximated by a

2

low-order polynomial. The energy consumption for a fixed
CPU load is, in general, minimized by using the highest
number of cores and the lowest frequency at which the load
can be served. However, the minimum achievable energy
consumption is a piecewise concave function of the CPU
load.

• The energy consumed by hard disks for reading and writ-
ing depends on the CPU frequency and the I/O block sizes.
Both reading and writing energy costs increase slightly
with the CPU frequency. While the energy consumption
due to reading is not affected by block size, the energy
consumption due to writing increases with the block size.
The reading efficiency (expressed in MB/J) is barely
affected by the CPU frequency, while writing efficiency
is a concave function of the block size since it boosts the
throughput of writing until a saturation value is reached.

• The energy consumption and the efficiency of the NIC
(Network Interface Card), both in transmission and recep-
tion, depends on the CPU frequency, the packet size, and
the transmission rate. The efficiency of data transmission
increases almost linearly with the transmission rate, with
steeper slopes corresponding to lower CPU frequencies.
Although a linear relation between transmission rate and
efficiency holds for data reception as well, small packet
sizes yield higher efficiency in reception.
Overall, supported by our measurements, we provide a

holistic energy consumption model that only requires a few
calibration parameters for every different server architecture
which we want to evaluate (a universal energy model will
be too simplistic and inaccurate). We validate our model by
means of a server computing the PageRank metric of a graph
and a WordCount application in a Hadoop platform, first
without network activity, next with bulky network activity,
and finally in the cloud. We will find that the error of our
energy estimates is below 4.1% on average and never worse
than a 10%.

Differences from our prior work. The present work is
an extended version of [5]. With respect to our conference
paper, here the entire body of the paper has been revisited,
new and more detailed experimental and analytical results
have been included, as well as new findings on the energy-
efficiency observed for the tested servers. Changes and new
contents can be summarized as follows:
• More measurements have been realized for CPU, disk and

network and new material has been added to reflect the
new results regarding the energy efficiency of the afore-
mentioned server components. Specifically, the characte-
rization of the CPU energy consumption and efficiency,
and of disk energy consumption has been extended; sim-
ilarly, the characterization of power efficiency of network
interface cards includes now richer details and new results,
especially for large servers.

• Additional validation for our proposed model is provided,
which includes more cloud-based scenarios.
Organization of the rest of the manuscript. Section II

describes the methodology we used for our experiments. Sec-
tion III presents our measurement campaign, for every single
component which we tested. In Section IV we model the
energy consumption of the servers based on a few calibration

parameters which we find during our measurement campaign.
In Section V we discuss our findings and their implications.
Section VI provides information about related works and,
finally, Section VII concludes the paper.

II. METHODOLOGY

In this section we introduce the measurement techniques
we used to characterize the energy consumption of CPU
activity, disk access (read and write operations), and network
activity. We start our measurements by profiling the CPU
energy consumption, from where we obtain information
about the baseline energy consumption of the servers and
the energy consumption due to CPU load. Afterwards, we
profile the other two components, namely, disk and network.
Note that CPU and baseline measurements are of capital im-
portance in order to evaluate the other components, because
every time that we run a script to profile the behavior of
another component, some CPU cycles are needed in order
to execute it as well as to use the component that has to
perform the task. Therefore, to understand the contribution
of any component, we first need to identify the contribution
of the CPU and the baseline and calculate the difference.

To explore the possible parameters which determine the
energy consumption of a data center server and to obtain sta-
tistical consistency, we run our experiments multiple times.
Similarly, we run these experiments in different server archi-
tectures in order to validate our results and give consistency
to our conclusions.

A. Collecting System Data and Fixing Frequency Parameters

One prerequisite for our experiments is to have Linux
machines because we can freely modify and check the Linux
kernel, for instance to add kernel modules and utilities1

which allow us to change CPU frequencies at will, or to
log CPU activity stats so we can periodically read the core
frequency and the number of active and passive CPU ticks at
each core2. Once we have the number of ticks and the core
frequency, since a tick represents a hundredth of second,
cycles can be calculated as 100 ticks/frequency.

We use active cycles per second (ACPS) instead of CPU
load percentage to characterize CPU load because ACPS
depend on the CPU frequency used, as the higher the fre-
quency the more the work that can be processed. In contrast,
CPU load percentages cannot be compared when different
frequencies are used, while the amount of ACPS that can be
processed can be considered as an absolute magnitude. In
order to get (set) information about the operative frequency
of the system we used the cpufrequtils package3. With
those tools, we can monitor the CPU frequency at which the
system works and assign different frequencies to the cores.
However, to limit the number of possible combinations to
characterize, we assign the same frequency to all cores.

1e.g., cpufrequtils, acpi-cpufreq.
2File /proc/stat reports the number of ticks since the server started,

devoted to user, niced and system processes, waiting (iowait), processing
interrupts (i.e., irq and softirq), and idle. In our experiments we count both
waiting and idle ticks as passive ticks, while we denote the aggregated value
of the rest of ticks as active.

3https://wiki.archlinux.org/index.php/CPU Frequency Scaling

3

B. CPU

In order to evaluate the CPU power utilization we prepared
a script based on a benchmark application, lookbusy.4

Note that lookbusy allows us to load one or more CPU
cores with the same load. Our lookbusy-based experiment
follows the next steps: we first fix the CPU frequency to
the lowest possible frequency in the system; then we run
lookbusy with fixed amount of load for one core during
timeslots of 30 seconds, starting with the maximum load and
then decreasing the load gradually. After the last lookbusy
run we measure the power used during an additional timeslot
with no lookbusy load offered. We register the active
cycles and the power used during each timeslot.

After taking these different samples for one frequency we
move to the immediately higher frequency (we can list and
change frequencies thanks to cpufrequtils) and repeat
the previous steps. After going through all the available
frequencies, we restart the whole process but increasing by
one the number of active cores. We repeat this whole process
until all the cores of the server are active. Note that when
we change the frequency of the cores we change it in all of
them, active or not, for consistency. Similarly, when more
than one core is active, the load for all the active cores is
the same.

Once explained the scheme of our experiments, we must
clarify the meaning of running a timeslot with no load.
Note that zero-load is clearly not possible as there is always
going to be load in the system due to, e.g., the operating
system. However, during the timeslot in which we do not
run lookbusy, we measure the power corresponding to
the operational conditions which are as close as possible
to the ones of an idle system. Moreover, the decision of
using timeslots of 30 seconds is to guarantee enough, yet not
excessive, time for the measurements. In fact, as we start and
stop lookbusy at the beginning and end of the timeslots,
we need to ignore the first and the last few seconds of
measurements in each timeslot to avoid measurement noise
due to power ramps and operational transitions.

The measured values of load (in ACPS) and power in each
timeslot are used to obtain a least squares polynomial fittings
curve. These fittings characterize the CPU power utilization
for each combination of frequency and number of active
cores. We will use as baseline power utilization of each
one of these configurations the zero-order coefficient of the
polynomial of these fittings curves.

C. Disks

The energy consumption of the hard drive was evaluated
using two different scripts (for reading and writing) based on
the dd linux command.5 We chose dd as it allows us to read
files, write files from scratch, control the size of the blocks
we write (read), control the amount of blocks written (read)
and force the commit of writing operations after each block
in order to reduce the effect of operating system caches and
memory. We combine this tool with flushing the RAM and
caches after each reading experiment.

4http://www.devin.com/lookbusy.
5http://linux.die.net/man/1/dd.

In both our scripts we perform write (read) operations for a
set of different I/O block sizes and for different data volumes
to be written (read). We record the CPU active cycles, the
total power and time used in each one of these operations
for each combination of block size and available frequency.

Finally, we identify the contribution of the disk to the total
power utilization by subtracting the contribution of both the
baseline and the CPU from the measured total power.

Disk I/O experiments shed light on the relevance of the
block sizes when reading or writing as well as whether there
is an influence of the frequency on these operations.

D. Network

In order to evaluate the contribution of the network to the
energy consumption of a cloud data center server, we devised
a set of experiments based on a client-server C script devised
on purpose for this task.

There are a few aspects that we consider relevant in order
to characterize the impact of the NIC on the total energy
consumption of a server and that led us to choose these two
tools. First, the ability of performing tests in which the server
under study acts as sender or as receiver during a network
connection, and therefore we can observe server’s energy
consumption while sending data or receiving it. To clarify
the terms, sender is the server which injects traffic to the
network, and receiver is the server which accepts traffic from
the network. Second, the ability of those tools to change
several parameters that we consider relevant for the energy
characterization of the servers, namely, the packet size and
the offered load, jointly with the frequency of the system.

Our experiments consist, then, on measuring the achieved
data rate, the CPU active cycles per second (ACPS) and the
total energy consumption of the server under study either as
sender or as receiver using different packet sizes and different
transfer rates. We run each experiment multiple times for
statistical consistency.

Finally, using the CPU active cycles per second which
were measured during the experiment, we identify the energy
consumption due to CPU. Subtracting both CPU energy
consumption and the baseline energy consumption from the
total energy consumption of the experiment, we can isolate
the energy consumption of the network.

III. MEASUREMENTS

A. Devices and Setup

In order to monitor and store the instantaneous power
used by a server during the different experiments we used a
Voltech PM1000+ power analyzer6, which is able to measure
the total instantaneous power used by the server under test on
a per-second basis. In Fig. 1 we show a schematic representa-
tion of the setup we used and the components under testing.
More specificaly, in order to take our measurements we
connected the server being measured to the power analyzer
and the latter to the power supply. In the case of servers
with power redundancy one of the two power sources was
unplugged to ensure that the power measurement was correct.

6More information about the PM1000 can be found in http://www.farnell.
com/datasheets/320316.pdf

4

TABLE I: Characteristics of the servers under study

Component Servers
Survivor Nemesis Erdos

CPU (#cores) 4 4 64
1.2, 1.333, 1.596, 1.729, 1.862,

Freqs List 1.467, 1.6, 1.995, 2.128, 2.261, 1.4, 1.6, 1.8,
([GHz]) 1.733, 1.867, 2.394, 2.527, 2.666, 1.8, 2.1,2.3

2.0, 2.133 2.793, 2.794
RAM 4 GB 4 GB 512 GB

Disk 2 TB 2+3 TB 2 × 146 GB,
4 × 1 TB

Network 1 Gbps 3 × 1 Gbps 4 × 1 Gbps,
2 × 10 Gbps

Fig. 1: Schematic representation of our setup when Nemesis
is being measured. Red arrows show the alternative scheme
to measure Survivor (or Erdos).

In the experiments where the network was not involved (CPU
and disk), we unplugged the network cable from the server,
which has an impact on the power utilization as the port
goes idle. In the network based experiments we established
an Ethernet connection between the server under study and
a second machine in order to study the server behavior, both
as a receiver and as a sender.

We evaluated three different servers: Survivor,
Nemesis, and Erdos. We will now present these servers
although their main characteristics, including their sets of
available CPU frequencies, can be also found in Table I.
Survivor has an Intel Xeon E5606 4-core processor7, with
4 GB of RAM, a 2 TB Seagate Barracuda XT hard drive
and a 1 Gigabit Ethernet card integrated in the motherboard.
Nemesis is a Dell Precision T3500 with an Intel Xeon
W3530 4-core processor, 4 GB of RAM, 2 hard drives (a
2 TB Seagate Barracuda XT and a 3 TB Seagate Barracuda),
a 1 Gigabit Ethernet card integrated in the motherboard, and
a separate Ethernet card with two 1 Gigabit ports. In this
study we only evaluate the Seagate Barracuda XT disk and
the integrated Ethernet card. Both Survivor and Nemesis
use the Ubuntu Server edition 10.4 LTS Linux distribution.
Finally, Erdos is a Dell PowerEdge R815 with 4 AMD
Opteron 6276 16-core processors (i.e., 64 cores in total),
512 GB of RAM, two 146 GB SAS hard drives configured

7FSB frequency was fixed for all CPU frequencies in the experiments
performed with Intel machines.

as a single RAID1 system (which is the “disk” analyzed here)
and four 1 TB Near-line SAS hard drives. It also includes
four 1 Gigabit and two 10 Gigabit ports. Erdos is a high-
end server and uses Linux Debian 7 Wheezy.

B. Baseline and CPU

As we mentioned in Section II, for each server we
have measured the power it uses with neither disk accesses
nor network traffic. We assume that the power utilization
observed is the sum of the baseline consumption plus the
power used by the CPU. We have obtained samples of the
power consumed under different configurations that vary in
the number of active cores used, the frequency at which the
CPU operates (all cores operate at the same frequency), and
the active cores load (all active cores are equally loaded).
The list of available and tested CPU frequencies and cores
can be found in Table I. We tune the total load ρ by using
lookbusy, as described in Section II. Each experiment lasts
30 s and it is repeated 10 times. Results are summarized
in terms of average and standard deviation. Specifically, in
the figures reported in this section, the power utilization
for each tested configuration is depicted by means of a
vertical segment centered on the average power utilization
measured, and with segment size equal to two times the
standard deviation of the samples.

The results of these experiments for each of the 3 servers
are presented in Fig. 2 (the measurements for some frequen-
cies and some number of cores are omitted for clarity). Here,
for each configuration of number of active cores, frequency,
and load in ACPS, the mean and standard deviation of all
the experiments with that configuration are presented. Also
the least squares polynomial fitting curve for the samples is
shown for each number of cores and frequency. The curves
shown are for polynomials of degree 7, but we observed
that using a degree 3 polynomial instead does not reduce
drastically the quality of the fit (e.g., the relative average
error of the fitting increases from 0.7% with 7-th degree
polynomials to 1.5% with degree equal to 3 for Erdos,
while it remains practically stable and below 0.7% for
Nemesis). In general, we can use an expression like the
following to characterize the CPU power utilization:

PBC(ρ) =

n∑
k=0

αkρ
k, n ≤ 7, (1)

where PBC includes both the baseline power utilization of
the servers and the power used by the CPU, and ρ is the load
expressed in active cycles per second. Therefore, coefficient
α0 in Eq. 1 represents the consumption of the system when
the CPU activity tends to 0, and we can thereby interpret α0

as the baseline power utilization of the system. Note that the
polynomial fitting, and hence the baseline power utilization
α0, depends on the particular combination of number of cores
and frequency adopted. However, for sake of readability,
we do not explicitly account for such a dependency in the
notation.

A first observation of the fitting curves for each particular
server in Fig. 2 reveals that the power for near-zero load is
almost the same in curves (e.g., for Nemesis this value is

5

0 1 2 0 1 2 3 4 0 1 2 3 4 5 6 7 8 9

65

70

75

80

85

90

95

100

Load ρ [ACPS]

P
o

w
er

 C
o

n
su

m
p

ti
o

n
 P

B
C

 [
W

]

× 109

1 Core 4 Cores
2.133 GHz

1.867 GHz

1.467 GHz

1.2 GHz

2 Cores

(a) Survivor

0 1 2 3 0 1 2 3 4 5 0 1 2 3 4 5 6 7 8 9 10 11 12
80

90

100

110

120

130

140

150

160

Load ρ [ACPS]

P
o

w
er

 C
o

n
su

m
p

ti
o

n
 P

B
C

 [
W

]

× 109

1 Core 2 Cores 4 Cores

2.794 GHz

2.527 GHz

1.995 GHz

1.596 GHz

(b) Nemesis

0 3 0 10 0 10 20 30 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
200

300

400

500

600

Load ρ [ACPS]

P
o

w
er

 C
o

n
su

m
p

ti
o

n
 P

B
C

 [
W

]

× 109

1 Core

16 Cores 64 Cores
2.3 GHz

1.4 GHz

2.1 GHz

1.8 GHz

1.6 GHz

4 Cores

(c) Erdos

Fig. 2: Power utilization of 3 servers (Survivor,
Nemesis, and Erdos) for baseline and CPU characteri-
zation experiments. In each figure, the color of the curve
identifies the frequency used.

between 84 and 85 W). Observe that it is impossible to run an
experiment in which the load of the CPU is actually zero to
obtain the baseline power utilization of a server. However,
all the fitting curves converge to a similar value for ρ →
0, which can be assumed to represent the baseline power
utilization.

A second observation is that for one core the curves grow
linearly with the load. However, as soon as two or more cores
are used, the curves are clearly concave, which implies that
for a fixed frequency the efficiency grows with the load (we
will discuss later the efficiency in terms of number of active
cycles per energy unit).

Load ρ [ACPS] ×109
0 2 4 6 8 10 12

P
o

w
er

 C
o

n
su

m
p

ti
o

n
 P

 B
C
 [

W
]

80

90

100

110

120

130

140

150

160

 P
min

(ρ)

4 Cores
3 Cores
2 Cores
1 Core

P
min

(ρ)

(a) Minimal power.

Load ρ [ACPS] ×109
0 2 4 6 8 10 12

E
ff

ic
ie

n
cy

 η
C

 [
A

C
P

S
/W

]

×108

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

η
max

(ρ)

4 Cores
3 Cores
2 Cores
1 Core

η
max

(ρ)

(b) Maximal efficiency.

Fig. 3: CPU performance bounds of Nemesis.

A third observation is that frequency does not significantly
impact the power utilization when the load is low. In contrast,
at high load, the power clearly increases with the CPU
frequency. More precisely, the power grows superlinearly
with the frequency, for a fixed load and number of cores. This
is particularly evident in the curves characterizing Erdos,
the most powerful among our servers.

From the previous figures it emerges that the power
utilization due to CPU and baseline can be minimized by
selecting the right number of active cores and a suitable CPU
frequency. Similarly, we can expect that the energy efficiency,
defined as number of active cycles per energy unit, can be
maximized by tuning the same operational parameters. We
graphically represent the impact of operation parameters on
power utilization and energy efficiency in Figs. 3, 4 and
5 respectively for Nemesis, Survivor and Erdos. In
particular, Figs. 3(a), 4(a) and 5(a) report all possible fitting
curves for the power measurements, plus a curve marking
the lowest achievable power utilization at a given load. We
name such a curve “minimal power curve” Pmin(ρ), and
we observe that (i) it only depends on the load ρ, and
(ii) it is a piecewise concave function, which makes it
suitable to formulate power optimization problems. Finally,
to evaluate the energy efficiency of the CPU, we report in
Figs. 3(b), 4(b) and 5(b) the number of active cycles per
energy unit obtained from our measurements respectively
for Nemesis, Survivor and Erdos. We compute the
power due to active cycles as the power PBC − α0, i.e.,
by subtracting the baseline consumption from PBC , and
we obtain the efficiency ηC by dividing the load (in active
cycles per second) by the power due to active cycles, i.e.,
ηC = ρ

PBC(ρ)−α0
. Also in this case we show the curve

6

10

15

20

25

30

75

80

1.2
1.333
1.467
1.6
1.733
1.867

2 2.133
1.2
1.333
1.467
1.6
1.733

1.867
2 2.133
1.2
1.333
1.467

1.6
1.733
1.867
2 2.133
1.2
1.333

1.467
1.6
1.733
1.867
2 2.133

Frequency [GHz]

P
o

w
er

 P
Dr

 [
W

]

Measured Power
Disk Power
CPU power

100MB 10MB 1MB 10KB

(a) Power utilization during reading (Survivor).

0

5

10

15

52.5

57.5

62.5

67.5

72.5

77.5

1.2
1.333
1.467
1.6
1.733
1.867

2 2.133
1.2
1.333
1.467
1.6
1.733

1.867
2 2.133
1.2
1.333
1.467

1.6
1.733
1.867
2 2.133
1.2
1.333

1.467
1.6
1.733
1.867
2 2.133

Frequency [GHz]

P
o

w
er

 P
Dw

 [
W

]

Measured Power
Disk Power
CPU power

100MB 10MB 1MB 10KB

(b) Power utilization during writing (Survivor).

65
75
85
95

225
235
245
255
265
275
285
295
305
315
325
335

1.4

1.6

1.8

2.1

2.3

1.4

1.6

1.8

2.1

2.3

1.4

1.6

1.8

2.1

2.3

1.4

1.6

1.8

2.1

2.3

Frequency [GHz]

P
o

w
er

 P
Dr

 [
W

]

Measured Power
Disk Power
CPU + BL power

100 MB 10 MB 1 MB 10 KB

(c) Power utilization during reading (Erdos).

25
35
45
55
65
75
85
95

235
245
255
265
275
285
295
305
315
325
335
345
355
365
375

1.4

1.6

1.8

2.1

2.3

1.4

1.6

1.8

2.1

2.3

1.4

1.6

1.8

2.1

2.3

1.4

1.6

1.8

2.1

2.3

Frequency [GHz]

P
o

w
er

 P
Dw

 [
W

]

Measured Power
Disk Power
CPU + BLmpower

100 MB 10 MB 1 MB 10 KB

(d) Power utilization during writing (Erdos).

Fig. 6: Instantaneous power utilization for a reading/writing operations. Results are presented for every frequency and for
4 different block sizes for each one of our servers.

Active Cycles Per Second [ACPS] ×109
0 1 2 3 4 5 6 7 8 9

P
o

w
er

 C
o

n
su

m
p

ti
o

n
 P

 B
C
 [

W
]

60

65

70

75

80

85

90

95

100

P
min

(ρ)

4 Cores
3 Cores
2 Cores
1 Core

P
min

(ρ)

(a) Minimal power.

Active Cycles Per Second [ACPS] ×109
0 1 2 3 4 5 6 7 8 9

E
ff

ic
ie

n
cy

 η C

 [
A

C
P

S
/W

]

×108

0.5

1

1.5

2

2.5

η
max

(ρ)

4 Cores
3 Cores
2 Cores
1 Core

ηmax(ρ)

(b) Maximal efficiency.

Fig. 4: CPU performance bounds of Survivor.

that maximizes the efficiency at a given load, which we
name “Maximal efficiency curve” ηmax(ρ). Interestingly, we
observe that (i) ηmax(ρ) presents multiple local maxima, (ii)

Load ρ [ACPS] ×1010
0 5 10 15

P
o

w
er

 C
o

n
su

m
p

ti
o

n
 P

 B
C
 [

W
]

200

250

300

350

400

450

500

550

600

650

P
min

(ρ)

64 Cores
32 Cores
16 Cores
8 Cores
4 Cores
2 Cores
1 Core

P
min

(ρ)

(a) Minimal power.

Load ρ [ACPS] ×1010
0 5 10 15

E
ff

ic
ie

n
cy

 η
C

 [
A

C
P

S
/W

]

×108

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

 η
max

(ρ)

64 Cores

32 Cores

16 Cores

8 Cores

4 Cores

2 Cores

1 Core

η
max

(ρ)

(b) Maximal efficiency.

Fig. 5: CPU performance bounds of Erdos.

for a given configuration of frequency and number of active
cores, the efficiency is maximized at the highest achievable
load, (iii) all local maxima corresponds to the use of all

7

available active cores, but (iv) the absolute maximum is not
achieved neither at the highest CPU frequency nor at the
lowest.

C. Disks

We now characterize the power and energy consumption of
disk I/O operations. During the experiments, we continuously
commit either read or write operations, while keeping the
CPU load ρ as low as possible (i.e., we disconnect the
network and we do not run other tasks). Still, the power
measurements obtained during the disk experiments contain
both the power used by the disk and power due to CPU and
baseline. Indeed, Fig. 6 shows, for each experiment, the total
measured power Pt, the power PBC computed according
to Eq. 1 at the load ρ measured during the experiment,
and the power due to disk operations, computed as P xD =
Pt −PBC(ρ), x ∈ {r, w}, where r and w refer to reading
and writing operations, respectively. We test sequentially all
the available frequencies for each server (see Table I), and
I/O block sizes ranging from 10 KB to 100 MB. Fig. 6
shows average and standard deviation of the measures over
10 experiment repetitions. Results for Nemesis are omitted
since they are like Survivor’ results. Indeed, Survivor
and Nemesis have similar disks and file systems, while
Erdos is equipped with SAS disks with RAID. In all cases
shown in the figure, the disk power is small but not negligible
with respect to the baseline consumption. Furthermore, we
can observe that the two servers presented behave differently.
Indeed, while the power utilization due to writing is affected
by the block size B for both machines, we observe that
Survivor’ disk writing power PwD is not affected by the
CPU frequency, while Erdos’ results show an increase with
the frequency. A similar behavior is also observed for the
reading power of the disk. The main difference is that reading
is a more costly operation since the power consumption in
reading is approximately 30% higher as can be observed in
Figs. 6(a),6(b) and Figs. 6(c),6(d).

Moreover, the results obtained with Erdos are affected
by a substantial amount of variability in the measurements,
which we believe is due to the caching operations enforced
by the RAID mechanism in Erdos. Furthermore, Erdos
shows a baseline plus CPU power decrease for both reading
and writing. This behavior is because Erdos is very pow-
erful and higher CPU frequencies finish the workload faster
(keep in mind that disks are the bottleneck for disk-intensive
tasks) and therefore in accordance with Fig. 2 the average
load ρ will be lower when higher frequencies are used.

Similarly to what was described for the CPU, we can
also compute the energy efficiencies ηrD and ηwD of disk
reading and writing operations, respectively. This efficiency
can be computed by subtracting the baseline power from the
total power, and by measuring the volume V of data read
or written in an interval T as ηxD = V

Px
D
T , x ∈ {r, w}.

Similarly to what can be seen in Fig. 6, reading efficiency
is almost constant at any frequency and for each block
size, while writing is more efficient with large block sizes.
Also, the efficiency changes very little with the adopted
CPU frequency. Efficiency, however, saturates to a disk-
dependent asymptotic value, which is due to the mechanical

constraints of the disk (e.g., due to the non-negligible seek
time, the number of read/write operations per second is
limited). Although we do not provide a figure due to space
limitations, it can be shown that ηwD is a concave function of
the block size B.

D. Network

The last server component that we characterize via mea-
surements is the NIC. Similarly to CPU and disk, we run
experiments in which only the operating system and our
test scripts are active. For the network, we run the scripts
described in Sec. II-D to transmit (receive) traffic over a
gigabit Ethernet connection and count the system active
cycles ρ. We measure the total power utilization Pt during
the experiment, so that the power due to network activity
can be then estimated as P xN = Pt −PBC(ρ), x ∈ {tx, rx},
where P txN and P rxN refer to the power consumed when acting
as a sender and as a receiver, respectively.

In the experiments, we sequentially test all the available
frequencies for each server (see Table I), and fix the packet
size and transmission rate within the achievable set of rates
(which depends on the packet size, e.g., < 950 Mbps for
1470-B packets). We report the results for the network
energy in terms of efficiencies ηtxN and ηrxN (volume of
data transferred per unit of energy). These efficiencies are
computed as ηxN = R

Px
N

, x ∈ {tx, rx}, where R is the
transmission rate during the experiment.

Fig. 7 shows the network efficiencies of Survivor,
Nemesis and Erdos averaged over 5 samples per trans-
mission rate R8. Due to space limitations, for Nemesis
and Erdos, we include the figures only for ηtxN , however,
their behavior when acting as receiver, i.e, ηrxN , is very
similar to the one exhibited by Survivor. For the sake
of readability, the figures only shows results for the biggest
and smallest packet sizes, i.e., 64-B and 1470-B packets. For
Nemesis and Survivor we report four CPU frequencies:
the lowest, the highest, the most efficient (according to
Figs. 3(b) and 4(b)) and an intermediate one, while all five
available frequencies for Erdos are shown. The figure also
reports the polynomial fitting curves for efficiency, which we
found to be at most of second order. Since the efficiency is
represented in terms of network activity only, in the fitting
we force the zero-order coefficient of the polynomials to be
0. Therefore, we can characterize the network efficiencies of
our servers as ηxN = β1R + β2R

2, x ∈ {tx, rx}, where the
βi coefficients are computed by minimizing the least square
error of the fitting.

It can be observed in Fig. 7 that efficiencies are almost
linear or slightly superlinear with the transfer rate, e.g.,
the receiving efficiency of Survivor exhibits an evident
quadratic behavior. Indeed, our measurements show that the
network power utilization is independent from the through-
put, which is a well known result for legacy Ethernet devices.
In fact, the NICs of our servers are not equipped with power
saving features like, e.g., the recently standardized IEEE
802.3az [6].

8Network results are obtained by using a point-to-point Ethernet connec-
tion between two controlled servers.

8

 0

 2

 4

 6

 0 50 100 150 200 250 300

E
ffi

ci
en

cy
 η

N
rx

 [M
B

/J
]

Transfer rate R [Mbps]

1.2GHz
1.6GHz

1.867GHz
2.133GHz

(a) ReceiverEfficiency (Survivor).

 0

 2

 4

 0 50 100 150 200 250

E
ffi

ci
en

cy
 η

N
tx

 [M
B

/J
]

Transfer rate R [Mbps]

1.2GHz
1.6GHz

1.867GHz
2.133GHz

(b) Senderefficiency (Survivor).

 0

 2

 0 50 100 150 200 250

E
ffi

ci
en

cy
 η

N
tx

 [M
B

/J
]

Transfer Rate R [Mbps]

1.4GHz-64B
1.6GHz-64B
1.8GHz-64B
2.1GHz-64B
2.3GHz-64B

(c) Senderefficiency (Erdos).

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 50 100 150 200 250 300

E
ffi

ci
en

cy
 η

N
tx

 [M
B

/J
]

Transfer rate R [Mbps]

1.596GHz
2.128GHz
2.394GHz
2.794GHz

(d) Senderefficiency (Nemesis).

 0

 4

 8

 12

 16

 20

 0 200 400 600 800 1000

E
ffi

ci
en

cy
 η

N
rx

 [M
B

/J
]

Transfer rate R [Mbps]

1.2GHz
1.6GHz

1.867GHz
2.133GHz

(e) Receiverefficiency (Survivor).

 0

 4

 8

 12

 16

 20

 0 200 400 600 800 1000

E
ffi

ci
en

cy
 η

N
tx

 [M
B

/J
]

Transfer rate R [Mbps]

1.2GHz
1.6GHz

1.867GHz
2.133GHz

(f) Senderefficiency (Survivor).

 0

 2

 4

 6

 8

 10

 12

 0 200 400 600 800 1000

E
ffi

ci
en

cy
 η

N
tx

 [M
B

/J
]

Transfer Rate R [Mbps]

1.4GHz-1470B
1.6GHz-1470B
1.8GHz-1470B
2.1GHz-1470B
2.3GHz-1470B

(g) Senderefficiency (Erdos).

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 200 400 600 800 1000

E
ffi

ci
en

cy
 η

N
tx

 [M
B

/J
]

Transfer rate R [Mbps]

1.596GHz
2.128GHz
2.394GHz
2.794GHz

(h) Senderefficiency (Nemesis).

Fig. 7: Network efficiencies for different frequencies and 64-B (upper) and 1470-B (bottom)
packets.

In all cases, the efficiency is strongly affected by the
selected CPU frequency. Moreover, efficiency is also affected
by packet size, although the impact of packet size changes
from server to server, e.g., Survivor sending efficiency is
only slightly affected by it.

Another observation is that, depending on the packet size
and frequency used, sending can be more energy efficient
than receiving at a given transmission rate, and using the
highest CPU frequency is never the most efficient solution.
Note also that the efficiency decreases with the packet size,
although this effect is particularly evident at the receiver
side, while it only slightly impacts the efficiency of the
packet sender. However, network activity also causes non-
negligible CPU activity, as shown in Fig. 8. Due to space
limitations, we show the costs for several configurations for
both the sending and receiving cases in Survivor, while
only for the sending case in Nemesis and Erdos, however,
results were similar to the one from Survivor. Overall,
the lowest CPU frequency yields the lowest total power
utilization during network activity periods.

IV. ESTIMATING ENERGY CONSUMPTION

While the results presented in the previous sections are
useful to understand the energy consumption pattern of CPU,
disk and network, we believe that a much more important
use of these results is to estimate the energy consumption
of applications. In this section we describe how this can
be done from simple data about the application. Moreover,
we validate the proposed approach by estimating the energy
consumed by several map-reduce Hadoop computations.

A. Energy Estimation Hypothesis

The approach we propose to estimate the energy Eapp
consumed by an application lays on the basic assumption that
the energy is essentially the sum of the baseline energy EB
(baseline power times application running time), the energy
consumed by the CPU EC , the energy consumed by the disk
ED, and the energy consumed by the network interface EN :

Eapp = EB + EC + ED + EN . (2)

9

 0

 50

 100

 150

 200

 250

 300

 350

1.400

2.100

2.300

1.400

2.100

2.300

P
ow

er
 C

on
su

m
pt

io
n

[W
]

Frequency [GHz]

64-bytes 1470-bytes
Baseline CPU Network

(a) Erdos (sender).

 0

 20

 40

 60

 80

 100

 120

 140

1.596

2.128

2.794

1.596

2.128

2.794

P
ow

er
 C

on
su

m
pt

io
n

[W
]

Frequency [GHz]

64-bytes 1470-bytes

Baseline CPU Network

(b) Nemesis (sender).

 0

 20

 40

 60

 80

 100

 120

1.200

1.867

2.133

1.200

1.867

2.133

1.200

1.867

2.133

1.200

1.867

2.133

P
ow

er
 C

on
su

m
pt

io
n

[W
]

Frequency [GHz]

64-bytes 1470-bytes 64-bytes 1470-bytes
Sender Receiver

Baseline CPU Network

(c) Survivor (sender-receiver).

Fig. 8: Power utilization with network activity for Erdos, Nemesis and Survivor (64-B experiments were run with a
transmission rate R = 150 Mbps, while R = 400 Mbps for the experiments with 1470-B packets).

Hence, the process of estimating Eapp is reduced to estimat-
ing these four terms. In order to estimate the first two terms,
we need to know the total number of active cycles that the
application will execute, Capp, and the load ρapp (in ACPS)
that the execution will incur in the CPU. From this, the total
running time Tapp can be computed as Tapp = Capp/ρapp.
Then, once the number of cores and the frequency that will
be used have been defined, it is also possible to estimate the
baseline plus the CPU energy consumption EB + EC . For
this estimation, we use the fitting curves in Fig. 2 to extract
the power utilization, PBC , and multiplying by the execution
time of the application, Tapp, we get the corresponding
energy consumption:

EB + EC = PBCTapp = PBCCapp/ρapp. (3)

The energy consumed by the disk is simply the energy
consumed while reading and writing, i.e., ED = ErD +EwD.
To estimate these latter values, the block size to be used
has to be decided, from which we can obtain an estimate
of the efficiency of reading, ηrD, and writing, ηwD. These,
combined with the total volume of data read and written by
the application, denoted as V rD and V wD respectively, allow
to obtain the estimate energy as

ED =
V rD
ηrD

+
V wD
ηwD

. (4)

Finally, to estimate EN , the transfer rate R and the packet
size S have to be chosen, which combined with the frequency
used, yield sending and receiving efficiencies ηtxN and ηrxN
(see Fig. 7). Then, if the total volumes of data to be sent and
received are V txN and V rxN , respectively, the energy spent due
to network is as follows:

EN =
V txN
ηtxN

+
V rxN
ηrxN

. (5)

Summing up Eqs. 3, 4, and 5 we obtain the estimated Eapp.

B. Applications and Scenarios for Validation

In this subsection we present the applications and sce-
narios we experimented with in order to validate the model
presented in Section IV-A. Our goal was to be able to
estimate the energy consumed by an application deployed on
a data center based on the usage of its different components.
For that, we executed two different Hadoop applications,

PageRank and WordCount, in three different scenarios: first
with an Isolated Server (no network), second with a server
connected to the network, and finally with a two-server
cloud. For the first two scenarios we used Nemesis,
whereas, for the cloud case, we used both Nemesis and
Survivor. We describe applications and scenarios in detail
below.

Our first application is a Hadoop Map-Reduce PageR-
ank based application that follows the approach from
Castagna [7]. This application, that we denote PageRank
for simplicity, computes several iterations of the pagerank
algorithm on an Erdos-Renyi random (directed) graph with
1 million nodes and average degree 59 The execution of
the PageRank application has three phases: preprocessing,
map-reduce, and postprocessing. On its side, the map-reduce
phase is a sequence of several homogeneous iterations of the
PageRank algorithm that runs until a certain threshold is met.
For simplicity, we only estimate the energy consumed during
the map-reduce phase of the pagerank algorithm, which we
force to run 10 times.

Our second application is the Hadoop Map-Reduce
WordCount. This is a simple program that reads text files
and counts how often words occur. For WordCount we use
a few hundreds of books as input and estimate the energy
consumed for the whole map-reduce process.

As we have mentioned above, these applications are run in
3 different scenarios. In the first scenario, denoted as Isolated
Server, we run Hadoop in Nemesis keeping it disconnected
from the network. When we run our applications in this
scenario we are basically measuring the impact on the energy
consumption of the baseline, CPU and hard disk.

In the second scenario, denoted as Connected Server,
we run Hadoop in Nemesis while it exchanges data on a
gigabit LAN. In order to measure the effect of the network
on the energy consumption, we evaluate 4 different cases
for each application. These cases result from combining 2
different behaviors, depending on whether Nemesis acts as
a sender or as a receiver of data, with 2 different packet
sizes, 64 and 1470 bytes. To do so, we run Iperf, as a server
or as a client according to the case, in parallel with Hadoop.

9Our PageRank algorithm assigns one input graph to each mapper so, in
order to have one map task in each machine, two instances of this graph
had to be used in the cluster scenario.

10

Finally, in the third scenario, denoted as Cloud, we
set up a two-server Hadoop cluster with Nemesis and
Survivor. In this scenario Nemesis is configured as the
master node of the cluster and Survivor as a slave node.
The execution of the applications is shared by both nodes so
Hadoop itself exchanges traffic between both servers, and we
do not insert additional network traffic in this case. Finally, in
order to have a better control of the experiment, we force the
reduce tasks to be mandatorily run in Nemesis, which also
conditions the way the data is exchanged between Nemesis
and Survivor.

Observe that all 3 scenarios are based on Hadoop. This
implies that, apart from the map and reduce tasks due to
the applications being run, there are some extra processes
executed in the servers we are using. The most important
processes that we can find in Nemesis are NameNode
(the process that keeps the directory tree of all files in
the file system, and tracks where across the cluster the file
data is kept), Secondary NameNode (that performs periodic
checkpoints of the NameNode), DataNode (the process that is
in charge of storing data in the Hadoop File System (HDFS)),
JobTracker (that receives the jobs and submits MapReduce
tasks to the cluster nodes) and TaskTracker (a per node
process that can accept a determined number of MapReduce
tasks). On its side, Survivor runs, in the cloud scenario,
DataNode and TaskTracker.

C. Experiments and Observed Results

For the sake of consistency in the results, we ran both
applications 10 times per frequency for each one of the
considered scenarios and averaged the results.

We start by describing the Isolated Server scenario. For
each run i we record the total number of active cycles
executed Ciapp, the time spent T iapp and the volume of data
read (written), V r,iD (V w,iD). Since we cannot measure the
instantaneous CPU load, we assume that the CPU load is
the same during the run for a given frequency. Hence, it
can be estimated as ρiapp = Ciapp/T

i
app. Then, from ρiapp we

obtain the estimate of the instantaneous power P iBC using
the fitting curves as described in Section III. Finally, using
Eq. 3 we compute the estimate EiB+E

i
C . In order to estimate

the energy consumed by the disk operations, we use the fact
that Hadoop uses a block size of 64 MB. This allows us to
estimate the reading (writing) efficiencies, ηr,iD (ηw,iD) that we
compute, in Joules per byte. Combining these values with the
measured volume of data read and written (V r,iD and V w,iD),
as described in Eq. 4, we obtain EiD.

The total estimated energy of the application, Eiapp, is
obtained by summing up the energy of the different compo-
nents used in run i, as stated in Eq. 2 (remember that, in the
Isolated Server the network is not used). We sum the values
of the ten runs of an experiment and we get the estimated
Eapp =

∑10
i=1E

i
app. The (approximated) total real energy

Êiapp consumed in run i is computed by the average value
of the power samples which we registered with the power
analyzer during the run, and we multiply it with the run time
Tapp. Then, the total energy consumed by the experiment is
obtained as Êapp =

∑10
i=1 Ê

i
app. The estimation error for

each experiment is then computed as Êapp − Eapp.

Fig. 9: Energy consumption of Nemesis in the Isolated
Server scenario.

We show the results obtained for the Isolated Server
scenario with the minimum, the maximum, and the most
efficient10 frequencies (the results for the remaining frequen-
cies are similar) in Fig. 9. The figure shows the results for
both PageRank and WordCount. As can be seen, the error is
relatively small, except for the case when we run WordCount
at the maximum frequency. Errors are of 4%, 4%, 7%, 5%,
7% and 10% respectively, following the same order as in
Fig. 9.

We move now to the Connected Server scenario. As we
described in the previous section, this scenario is studied in
4 different cases depending on whether Nemesis acts as
sender or receiver and whether the size of the packets is of
64 or 1470 bytes. Of course, another relevant parameter is
the rate at which these packets are sent. The rates used are
150 and 400 Mbps when using packets of 64 or 1470 bytes,
respectively.

The total energy consumed in these cases is computed in
the same way as we did for the Isolated Server scenario but
adding the contribution of the network. In order to estimate
the network consumption in one run with Nemesis sending
traffic (resp., receiving traffic), the sending efficiency ηtxN ,
(resp., receiving efficiency ηrxN) is obtained from the transfer
rate R, the frequency and packet size used (see Fig. 7). The
amount of data sent (resp., received) can be obtained from
the server itself by consulting the OS registers11. Therefore,
the energy of the network for an run i, EiN , is obtained using
Eq. 5. Then, including EiN for each run in the computation
of Eiapp we can obtain the total energy consumed by the
application. Following the same steps as in the previous
scenario, we get the results shown in Fig. 10 and 11. The
error measured is again relatively smaller for PageRank than
for WordCount. The error measured for each of the cases
can be found in Table II.

We finally analyze the Cloud scenario. In this scenario we
set up a cluster with two servers, Nemesis and Survivor,
and run the 2 aforementioned Hadoop applications in it.
This scenario may seem relatively similar to the Connected
Server scenario, but it has is a major difference. While in the
previous scenario we were the ones controlling the network

10Respectively 1.596, 2.128 and 2.794 GHz, according to the results
shown in Section III.

11We can read the registers rx bytes, rx packets, tx bytes or tx packets
from /sys/class/net/eth0/statistics.

11

(a) PageRank, sender side.

(b) PageRank, receiver side.

Fig. 10: Energy consumption of Nemesis running PageR-
ank in the Connected Server scenario, with either small or
big packets.

TABLE II: Error measured in the different cases of the
Connected Server scenario.

Packet Size Freq Cases
PR - Send PR - Rec WC - Send WC - Rec

64-B
1.596 0.5% 6.0% 2.9% 2.7%
2.128 2.0% 4.7% 6.4% 1.5%
2.794 0.5% 2.9% 4.0% 2.9%

1470-B
1.596 0.7% 6.9% 1.6% 6.5%
2.128 1.1% 6.5% 5.8% 5.8%
2.794 3.8% 0.3% 0.9% 1.5%

traffic, here the traffic is controlled by Hadoop. Specifically,
we know that, in this scenario, there are two main sources
of traffic: requesting input data when it is not present in a
server, and sending the mapper tasks outputs to the reducer
tasks. The only condition we impose in the server to have
some control over the traffic is related to this later aspect,
we force the reducers to be always in Nemesis.

Although we are able to retrieve the total amount of data
received or sent by each server, we know neither the size
of the packets used nor the rate. Therefore, we can compute
neither the sending efficiency ηtxN nor the receiving efficiency
ηrxN . In order to be able to compute both the sending and
receiving efficiencies we analyze the traffic exchanged by
both servers for each one of the applications. Fig. 12 shows
the amount of packets of each size that were exchanged by
both servers (and the direction of the exchange) for both
applications. The results show the vast majority of packets
are either small (64 bytes) or big (1470 bytes). Moreover,

(a) WordCount, sender side.

(b) WordCount, receiver side.

Fig. 11: Energy consumption of Nemesis running Word-
Count in the Connected Server scenario, with either small or
big packets.

 0

 0.2

 0.4

 0.6

 0.8

 1

 64 65-1469

1470
>1470

 64 65-1469

1470
>1470

P
ac

ke
t d

is
tr

ib
ut

io
n

[%
]

Packet size [Bytes]

Pagerank Wordcount

Nemesis->Survivor Survivor->Nemesis

Fig. 12: Distribution of the sizes of the packets exchanged
between Nemesis and Survivor for both PageRank and Word-
Count in the Cloud scenario.

it shows that most of the packets sent from Nemesis to
Survivor are small packets for both applications, while
big packets are sent in the opposite direction.

Given these results, we approximate the energy consumed
by the network assuming that all the packets exchanged
are of the same size and that the rate is the maximum
achievable rate for each packet size according to the results
from Section III. For instance, we consider roughly 30 Mbps
when Survivor receives 64-Byte packets and roughly 970
Mbps if it sends 1470-Byte packets. These assumptions allow
us to compute now ηtxN and ηrxN . The remaining parameters
are computed as for the other scenarios, so to determine

12

(a) Nemesis

(b) Survivor

Fig. 13: Energy consumption of Nemesis and Survivor
in the Cloud scenario.

Êapp and Eapp. The results are shown in Fig. 13. As in the
previous scenarios, errors are relatively low. In particular,
the error in Nemesis when running PageRank is 3.1% and
1.4% for 2.128 GHz and 2.794 GHz, respectively, and of
a 9.7% and a 6.5% for 2.128 GHz and 2.794 GHz when
running WordCount. On the other hand, the measured errors
for Survivor are 3.3% and 3.6% for 1.867 GHz and
2.133 GHz when running PageRank and 5.1% and 5.2%,
respectively, when running WordCount.

V. DISCUSSION

We discuss now some of the implications of our results.
We start with consolidation as a technique for energy saving.
It has been often assumed that the best way of saving energy
is by using the highest frequency available and applying
consolidation (which is to fill servers as much as possible).
This reduces the total number of servers being used, allowing
to switch off the rest. This assumption has led to proposing
bin-packing based solutions [8], [9], [10], [11]. However, the
results presented in Figs. 3(b), 4(b) and 5(b) show that the
highest frequency is not always the most efficient one, and
this has been found to be true for two different architectures
(Intel and AMD). This implies that, by running servers
at the optimal amount of load, and the right frequency, a
considerable amount of energy could be saved.

A second relevant aspect is the baseline consumption
of servers. The results presented for all 3 servers show
that their baselines are within a 30-50% of the maximum

consumption. Then, it is obvious that more effort has to
be done for reducing baseline consumption. For instance,
a solution could consist in switching off cores in real time,
not just disabling them, or in introducing very fast transitions
between active and lower energy states, i.e., to achieve real
suspension in idle state.

There is another relevant issue related to the CPU load
associated to disk and network activity. It can be observed
in Fig. 6 that disks do not incur much CPU overhead. In fact,
the power used by the CPU plus baseline does not change
much across the experiments. Instead, the energy consumed
by the CPU due to network operations is even larger than the
energy consumed by the NIC (see Fig. 8). Some works [12]
have already pointed out that the way packets are handled
by the protocol stack is not energy efficient. Our results
reinforce this feeling and point out that building a more
efficient protocol stack would certainly reduce the amount
of energy consumed due to the network.

Finally, it is worth to mention that in this work we have
assumed that the power utilization of the RAM memory is in-
cluded in the baseline. The characterization experiments have
been run in such a way that there were few memory accesses,
so its power utilization did not affect our measurements.
However, RAM memory became an uncontrolled source of
power utilization in Section IV-C when we validated our
proposed model. In fact, all the Hadoop processes that run in
the servers consume significant RAM memory. This impacts
more significantly the memory used by the cluster’s master
node, since it runs internal Hadoop processes (such as the
NameNode or the JobTracker) whose memory requirement
increases with the number of mappers and reducers. This
cost is, therefore, paid only in Nemesis, the master node
of our cluster, and not in Survivor, which explains the
different accuracy of the model for the two servers. This
error is particularly evident when WordCount is run, due to
the fact that the required number of mappers for WordCount
is larger than for PageRank and, therefore, the RAM required
in Nemesis increases and so does the uncontrolled energy
consumption.

VI. RELATED WORK

There is a large body of work in the field of modeling
server energy consumption and its components, both theo-
retically and empirically. The consumption of servers has
been assumed as linear, e.g., by Wang et al. [10], Mishra
et al. [9] or Beloglazov et al. [8], who assumed models
in which energy consumption mainly depends linearly on
CPU utilization. Based on the models, they proposed bin-
packing-like algorithms to reduce energy consumption. Other
works like the ones from Andrews et al. [13] or Irani et
al. [14] proposed non-linear models, claiming that energy
could be saved by running processes at the lowest possible
speed. However, we have experimentally shown that current
data center servers exhibit non-linear behaviors in terms of
energy consumption and that the impact of frequency is not
straightforward in modern servers.

Moving to the empirical field, we first classify works in
two different groups, depending on whether they consider
the effect of frequency in their analysis. We start with

13

works not considering frequency. In this category we find
articles proposing models where server components follow
a linear behavior, like in [15], [16], [17] or more complex
ones, like in [18], [19], [20]. In [16] Liu et al. proposed a
simple linear model and evaluate different hardware config-
urations and types of workloads by varying the number of
available cores, the available memory, and considering also
the contribution of other components such as disks. Vasan
et al. [17] monitored multiple servers on a datacenter as
well as the energy consumption of several of the internal
elements of a server. However, they considered that the
behavior of this server could be approximated by a model
based only on CPU utilization. Similarly, Krishnan et al. [15]
explored the feasibility of lightweight virtual machine power
metering methods and examined the contribution of some
of the elements that consume energy in a server like CPU,
memory and disks. Their model depends linearly on each of
these components. In [19], Economou et al. proposed a non-
intrusive method for modeling full-system energy consum-
ption by stressing its components with different workloads.
Their resulting model is also linear on the utilization of server
components. Finally, Lewis et al. [20] and Basmasjian et
al. [18] presented much more complex models which, apart
from the contribution of different components of the server,
consider extra parameters like temperature and cache misses
as well as multiple cores. In particular, Lewis et al. [20]
reported also an extensive study on the behavior of reading
and writing operations in hard disk and solid state drives. We
go beyond existing work by showing that, in data centers,
non-linear models and a new load metric are required to
improve the accuracy of energy consumption estimation.
Furthermore, we complement existing studies by showing
both individual and joint effects of load, I/O block sizes,
network activity and CPU frequencies.

Next we move to the works which also consider frequency
in their analysis. Miyoshi et al. [21] analyzed the runtime
effects of frequency scaling on power and energy. Brihi et
al. [22] presented an exhaustive study of DVFS using a
cpufrequtils as we do. Main differences with our work
were that they studied four different power management
policies under DVFS and centered their study on the rela-
tionship between CPU and power utilization. However, they
also presented interesting results about disk consumption that
match partially our results, showing a flat consumption in
reading operations and variations in the writing ones that
they attribute to the size of the files being written. Although
it was not the main objective of their work, Raghavendra
et al. [23] performed a per-frequency and core CPU power
characterization of two different blade servers. However, they
claimed that CPU power depends linearly on its utilization.
The main difference with our analysis is that we consider that
the load supported by a server increases with the number of
active cores and, hence, this load should not be represented
in percentage. Gandhi et al. [24] published the analysis of
global energy consumption versus frequency, based on DVFS
and DFS and gave some intuition about the non-linearity of
this relation. However, so far there has been no work like
ours, i.e., presenting a per-component analysis that allows us
to enter into deeper details on the energy versus frequency

analysis.
Moreover, there are studies that model the energy con-

sumption behavior for clouds and try to balance the load
in order to operate the cluster in its most efficient load-
power combination. MUSE [25] is one of the first works
that consider a resource management architecture for data
centers. Its energy efficient approach dynamically assigns
jobs to the servers based on the workload (for CPU and disk)
and the potential energy consumption. The authors measure
the energy consumption of servers and switches involved in
the cluster and conclude that at least 29% of the energy can
be saved by MUSE for typical web workloads. In [26] the
authors proposed a consolidation algorithm that considers the
workloads of the servers in the cloud in order to find the least
possible energy consumption point. Their study shows that
the energy consumption of a server using variable loads for
CPU and disks has an optimal operating point. Given the
data from the various servers the algorithm can estimate the
ideal load distribution among the servers. The authors in [27]
modeled the energy consumption of data centers equipment
(i.e., servers, storage, switches) for cloud computing based
on existing energy consumption measurements or publicly
available data sheets for each of the components (CPU,
disk, network, switches). The model estimates the energy
consumption per bit from the data center to the user and
further analyzes the energy consumption for different types
of services, i.e., storage, software, processing. However,
existing works on clouds lack experimental inputs on energy
consumption. Moreover, not only in our experiments we had
a complete control of servers and network and we were able
to correlate activity and consumption of different compo-
nents, but also we unveiled that baseline energy consumption
is key to achieve good analytical estimates.

We conclude with some works that also consider frequency
but do not model the energy consumption of a server. First
of them, the work from Le Sueur et al. [28] presented
an analysis of the evolution of the effectiveness of DVFS
and how it is reduced in the newest and most optimized
servers. They show that DVSF might be soon obsoleted
by the adoption of ultra low power sleep modes. Ge et al.
proposed PowerPack [29], a framework that includes a set
of toolkits to perform an exhaustive profile of the power
utilization of servers and its components. Their analysis is
centered in showing the contribution of multicore system
to the efficiency of several applications and, hence, no
power characterization is presented. Finally, Basmadjian et
al. [30] published an in deep analysis of the components of a
processor and its contribution to the energy consumption of
the CPU, shedding some light on the behavior of multicore
servers. Some of their conclusions are very relevant to our
work, as they show, for instance, that the energy consumption
of multiple cores performing parallel computations is not
equal to the sum of the power of each of those active cores.
Our experiments and model support their findings and shed
light on the nature of such effect.

VII. CONCLUSIONS

In this work we have reported our measurement-based
characterization of energy and power consumption in a

14

server. The results obtained in this work can be enumerated
as follows:

1) We have exhaustively measured the power consumed
by CPU, disk, and NIC under different configurations,
identifying the optimal operational levels, which usually
do not correspond to the static system configurations
commonly adopted.

2) We found that, besides the baseline component, which
does not change significantly with the operational pa-
rameters, the CPU has the largest impact on energy
consumption among all the three components.

3) We also observed that CPU power consumption is
neither linear nor concave with the load, i.e., the systems
are not energy proportional.

4) Our results showed that disk I/O is the second larger
contributor to power consumption, although perfor-
mance changes sensibly with the I/O block size used
by the applications.

5) Finally, the NIC activity is responsible for a small but
not negligible fraction of power consumption, which
scales almost linearly with the network transmission
rate.

In general, these results show that most of the en-
ergy/power performance figures do not scale linearly with the
utilization, in contrast to what is commonly assumed in the
literature. We have then shown how to predict and optimize
the energy consumed by an application via a concrete ex-
ample using network activity plus PageRank computation in
Hadoop. Our model achieves very accurate energy estimates,
obtaining errors below 4.1% on average, and always a within
10%, with respect to the measured total energy consumption.

Finally, as future work, we plan to do an evaluation of the
energy profile of multiple typical cloud operations, like in-
stantiation of virtual machines, in an OpenStack deployment.
Similarly, using the same applications we ran in our servers,
we will study the drawbacks, in terms of energy, of having
them ran in VM flavors similar to the typically offered ones
by private cloud providers such as Amazon Web Services or
Google Cloud.

REFERENCES

[1] W. V. Heddeghem, S. Lambert, B. Lannoo, D. Colle, M. Pickavet, and
P. Demeester, “Trends in worldwide ICT electricity consumption from
2007 to 2012,” Computer Communications, 2014.

[2] D. Kusic, J. O. Kephart, J. E. Hanson, N. Kandasamy, and G. Jiang,
“Power and performance management of virtualized computing envi-
ronments via lookahead control,” Cluster computing, vol. 12, no. 1,
pp. 1–15, 2009.

[3] J. Moore, J. Chase, P. Ranganathan, and R. Sharma, “Making
scheduling “cool”: Temperature-aware workload placement in data
centers.” in Proceedings of the Annual Conference on USENIX
Annual Technical Conference, ser. ATEC ’05. Berkeley, CA,
USA: USENIX Association, 2005, pp. 61–75. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1247360.1247365

[4] M. Weiser, B. Welch, A. Demers, and S. Shenker, “Scheduling for
reduced CPU energy,” in Mobile Computing, 1996, vol. 353, pp. 449–
471.

[5] J. Arjona Aroca, A. Chatzipapas, A. Fernández Anta, and V. Mancuso,
“A measurement-based analysis of the energy consumption of data
center servers,” in Proceedings of the 5th international conference on
Future energy systems. ACM, 2014, pp. 63–74.

[6] IEEE Std. 802.3az, “Energy Efficient Ethernet,” 2010.
[7] P. Castagna, “Having fun with pagerank and mapreduce,” Hadoop

User Group UK talk. Available: http://static.last.fm/johan/huguk-
20090414/paolo castagna-pagerank.pdf, 2009.

[8] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware resource
allocation heuristics for efficient management of data centers for cloud
computing,” Future Gener. Comp. Sy., vol. 28, no. 5, pp. 755–768,
2012.

[9] M. Mishra and A. Sahoo, “On theory of vm placement: Anomalies
in existing methodologies and their mitigation using a novel vector
based approach,” in Proceedings of the 2011 IEEE 4th International
Conference on Cloud Computing, ser. CLOUD ’11. Washington,
DC, USA: IEEE Computer Society, 2011, pp. 275–282. [Online].
Available: http://dx.doi.org/10.1109/CLOUD.2011.38

[10] M. Wang, X. Meng, and L. Zhang, “Consolidating virtual machines
with dynamic bandwidth demand in data centers,” in IEEE INFOCOM,
2011, pp. 71–75.

[11] L. Nonde, T. E. El-Gorashi, and J. M. Elmirghani, “Energy efficient
virtual network embedding for cloud networks,” Journal on Lightwave
Technology, vol. 33, no. 9, pp. 1828–1849, 2015.

[12] A. Garcia-Saavedra, P. Serrano, A. Banchs, and G. Bianchi, “Energy
consumption anatomy of 802.11 devices and its implication on mod-
eling and design,” in ACM CoNEXT, 2012, pp. 169–180.

[13] M. Andrews, S. Antonakopoulos, and L. Zhang, “Minimum-cost
network design with (dis)economies of scale,” in IEEE FOCS, 2010,
pp. 585–592.

[14] S. Irani, S. Shukla, and R. Gupta, “Algorithms for power savings,”
ACM Trans. Algorithms, vol. 3, no. 4, Nov. 2007. [Online]. Available:
http://doi.acm.org/10.1145/1290672.1290678

[15] B. Krishnan, H. Amur, A. Gavrilovska, and K. Schwan, “VM power
metering: feasibility and challenges,” ACM SIGMETRICS Performance
Evaluation Review, vol. 38, no. 3, pp. 56–60, 2011.

[16] C. Liu, J. Huang, Q. Cao, S. Wan, and C. Xie, “Evaluating energy and
performance for server-class hardware configurations,” in IEEE NAS,
2011, pp. 339–347.

[17] A. Vasan, A. Sivasubramaniam, V. Shimpi, T. Sivabalan, and R. Sub-
biah, “Worth their Watts? - An empirical study of datacenter servers,”
in IEEE HPCA, 2010, pp. 1–10.

[18] R. Basmadjian, N. Ali, F. Niedermeier, H. de Meer, and G. Giuliani,
“A methodology to predict the power consumption of servers in data
centres,” in ACM e-Energy, 2011, pp. 1–10.

[19] D. Economou, S. Rivoire, C. Kozyrakis, and P. Ranganathan, “Full-
system power analysis and modeling for server environments,” in Pro-
ceedings of Workshop on Modeling, Benchmarking, and Simulation,
2006, pp. 70–77.

[20] A. W. Lewis, S. Ghosh, and N.-F. Tzeng, “Run-time energy consum-
ption estimation based on workload in server systems,” HotPower’08,
pp. 17–21, 2008.

[21] A. Miyoshi, C. Lefurgy, E. Van Hensbergen, R. Rajamony, and
R. Rajkumar, “Critical power slope: understanding the runtime effects
of frequency scaling,” in ACM ICS’02, 2002, pp. 35–44.

[22] A. Brihi and W. Dargie, “Dynamic voltage and frequency scaling in
multimedia servers,” in IEEE AINA, 2013.

[23] R. Raghavendra, P. Ranganathan, V. Talwar, Z. Wang, and X. Zhu, “No
power struggles: Coordinated multi-level power management for the
data center,” in ACM SIGARCH Computer Architecture News, vol. 36,
no. 1. ACM, 2008, pp. 48–59.

[24] A. Gandhi, M. Harchol-Balter, R. Das, and C. Lefurgy, “Optimal
power allocation in server farms,” in ACM SIGMETRICS, 2009, pp.
157–168.

[25] J. S. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat, and R. P.
Doyle, “Managing energy and server resources in hosting centers,” in
ACM SIGOPS Operating Systems Review, vol. 35, no. 5, 2001, pp.
103–116.

[26] S. Srikantaiah, A. Kansal, and F. Zhao, “Energy aware consolidation
for cloud computing,” in Proceedings of the 2008 conference on Power
aware computing and systems, vol. 10. San Diego, California, 2008.

[27] J. Baliga, R. W. Ayre, K. Hinton, and R. Tucker, “Green cloud
computing: Balancing energy in processing, storage, and transport,”
Proceedings of the IEEE, vol. 99, no. 1, pp. 149–167, 2011.

[28] E. Le Sueur and G. Heiser, “Dynamic voltage and frequency scaling:
The laws of diminishing returns,” in Proceedings of 2010 Usenix
HotPower, 2010, pp. 1–8.

[29] R. Ge, X. Feng, S. Song, H.-C. Chang, D. Li, and K. W. Cameron,
“Powerpack: Energy profiling and analysis of high-performance sys-
tems and applications,” IEEE TPDS, vol. 21, no. 5, pp. 658–671, 2010.

[30] R. Basmadjian and H. de Meer, “Evaluating and modeling power
consumption of multi-core processors,” in IEEE e-Energy, 2012, pp.
1–10.

15

Jordi Arjona Aroca is a Ph.D. student at the
Universidad Carlos III de Madrid. He received
the Telecommunications Engineering degree from
the Universidad Politécnica de Valencia and his
Masters degree in Telematic Engineering at the
Universidad Carlos III de Madrid. As part of his
Ph.D. studies, Jordi Arjona Aroca is involved in
the field of energy optimization in data centers and
data center networking.

Angelos Chatzipapas received his B.S. degree
in computer engineering and informatics from
University of Patras, Greece, in 2006. He fur-
ther received his M.Sc. in telematics engineering
from University Carlos III in Madrid, Spain, in
2012. Currently, he is a Ph.D candidate at Uni-
versity Carlos III of Madrid and IMDEA Net-
works Institute. His research interests are in the
areas of energy efficient networking, network pro-
gramming, telecommunications, renewable energy
sources and photovoltaics.

Antonio Fernández Anta (M’98-SM’02) is a
Research Professor at IMDEA Networks Institute.
Previously he was a Full Professor at the Univer-
sidad Rey Juan Carlos (URJC) in Madrid and was
on the Faculty of the Universidad Politécnica de
Madrid (UPM), where he received an award for his
research productivity. He was a postdoc at MIT
from 1995 to 1997. He has more than 20 years
of research experience, with a steady productivity
of more than 5 papers per year on average. He is
Chair of the Steering Committee of DISC and has

served in the TPC of numerous conferences and workshops.

Dr. Vincenzo Mancuso is Research Assistant
Professor at IMDEA Networks Institute (Madrid,
Spain) since September 2010. He has build his
research experience by working with University of
Palermo (Italy), from which he received a Ph.D.
in Electronic, Computer Science and Telecommu-
nications in 2005, Rice University (Houston, TX,
USA), and INRIA Sophia Antipolis (France). His
research activities focus on analysis, design, opti-
mization and experimental evaluation of protocols
and architectures for efficient wireless networks.

