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Abstract. Random walks can be used to search complex networks for
a desired resource. To reduce search lengths, we propose a mechanism
based on building random walks connecting together partial walks (PW)
previously computed at each network node. Resources found in each PW
are registered. Searches can then jump over PWs where the resource is
not located. However, we assume that perfect recording of resources may
be costly, and hence, probabilistic structures like Bloom filters are used.
Then, unnecessary hops may come from false positives at the Bloom fil-
ters. Two variations of this mechanism have been considered, depending
on whether we first choose a PW in the current node and then check
it for the resource, or we first check all PWs and then choose one. In
addition, PWs can be either simple random walks or self-avoiding ran-
dom walks. Analytical models are provided to predict expected search
lengths and other magnitudes of the resulting four mechanisms. Simu-
lation experiments validate these predictions and allow us to compare
these techniques with simple random walk searches, finding very large
reductions of expected search lengths.

Keywords: Random walks, self-avoiding random walks, network search,
resource location, search length.

1 Introduction

A random walk in a network is a routing mechanism that chooses the next node
to visit at random among the neighbors of the current node. Random walks have
been extensively studied in mathematics, and have been used in a wide range of
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applications such as statistic physics, population dynamics, bioinformatics, etc.
When applied to communication networks, random walks have had a profound
impact on algorithms and complexity theory. Some of the advantages of random
walks are their simplicity, their small processing power consumption at the nodes,
and the fact that they need only local information, avoiding the communication
overhead necessary in other routing mechanisms. An important application of
random walks has been the search for resources held in the nodes of a network,
also known as the resource location problem. Roughly speaking, the problem
consists of finding a node that holds the resource, starting at some source node.
Random walks can be used to perform such a search as follows. It is checked first
if the source node holds the resource. If it does not, the search hops to a random
neighbor, that repeats the process. The search proceeds through the network in
this way until a node that holds the resource is found. Due to the random nature
of the walk, some nodes may be visited more than once (unnecessarily from the
search standpoint), while other nodes may remain unvisited for a long time. The
number of hops taken to find the resource is called the search length of that
walk. The performance of this direct application of random walks to network
search has been studied in [1,2,3,4,5].

The use of random walks for resource location has several clear applications,
like unstructured peer-to-peer (P2P) file sharing systems or content-centric net-
works (CCN) [6]. The latter are networks in which the key elements are named
content chunks, which are requested by users using the content name. Content
chunks have to be efficiently located and transferred to be consumed by the user.
The techniques described in this paper could be used in the context of CCN to
locate content chunks.

Contributions. This paper proposes an application to resource location of the
technique of concatenating partial walks (PW) available at each node to build
random walks. A PW is a precomputed random walk of fixed length. Two varia-
tions are considered, depending on whether the search mechanism first randomly
chooses one of the PWs in the current node and then checks its associated infor-
mation for the desired resource, or it first checks all PWs in the node and then
randomly chooses among those with a positive result. Both of these variations
may use PWs that are simple random walks (RW) or self-avoiding random-
walks (SAW), resulting in four mechanisms referred to as choose-first PW-RW
or PW-SAW, and check-first PW-RW or PW-SAW, respectively. Our mecha-
nisms assume the use of Bloom filters [7] to efficiently store the set of resources
(not their owners) held by the nodes in each partial walk. The compactness of
Bloom filters comes at the price of possible false positives when checking if a
given resource is in the partial walk. False positives occur with a probability p,
which is taken into account in our analyses. These assumptions provide gener-
ality to our model, since a probability of p = 0 models the case in which the full
list of resources found are stored (instead of using a Bloom filter).

We provide an analytical model for the choose-first PW-RW technique, with
expressions for the expected search length, the optimal length of the partial walks,
and for the optimal expected search length. We found that, when the probability
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of false positives in Bloom filters is small, the optimal expected search length
is proportional to the square root of the expected search length achieved by
simple random walks, in agreement with the results in [8]. Another interesting
finding is that the optimal length of the partial walks does not depend on the
probability of false positives of the Bloom filters. We also provide analytical
models for the choose-first PW-SAW mechanism as well as for the check-first
variations, which predict their expected search length. Then, the predictions of
the models are validated by simulation experiments in three types of randomly
built networks: regular, Erdős-Rényi, and scale-free. These experiments are also
used to compare the performance of the four mechanisms, and to investigate
the influence of parameters as the false positive probability and the number of
partial walks per node. Finally, we have compared the performance of the four
search mechanisms with respect to simple random walk searches. For choose-
first PW-RW we have found a reduction in the average search length ranging
from around 98% to 88%. For choose-first PW-SAW such a reduction is even
bigger, ranging from 12% to 5% with respect to PW-RW. Check-first PW-RW
and PW-SAW can achieve still larger reductions increasing the number of PWs
available at each node.

Related Work. Das Sarma et al. [8] proposed a distributed algorithm to obtain a
random walk of a specified length � in a number of rounds1 proportional to

√
�. In

the first phase, every node in the network prepares a number of short (random)
walks departing from itself. The second phase takes place when a random walk
of a given length starting from a given source node is requested. One of the short
walks of the source node is randomly chosen to be the first part of the requested
random walk. Then, the last node of that short walk is processed. One of its
short walks is randomly chosen, and it is connected to the previous short walk.
The process continues until the desired length is reached.

Hieungmany and Shioda [9] proposed a random-walk-based file search for P2P
networks. A search is conducted along the concatenation of hop-limited shortest
path trees. To find a file, a node first checks its file list (i.e., an index of files
owned by neighbor nodes). If the requested file is found in the list, the node
sends the file request message to the file owner. Otherwise, it randomly selects a
leaf node of the hop-limited shortest path tree, and the search follows that path,
checking the file list of each node in it.

The use of partial random walks in resource location has been proposed in [10]
for networks with dynamic resoures. Our work in this paper incorporates efficient
storage by means of Bloom filters, in the context of static resources. The use of
SAWs as PWs is also proposed and compared with simple RWs.

Structure. The next section presents a model for the four search mechanisms
proposed. Then, the choose-first PW-RW is evaluated in Section 3. For the

1 A round is a unit of discrete time in which every node is allowed to send a message
to one of its neighbors. According to this definition, a simple random walk of length
� would then take � rounds to be computed.
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sake of clarity, the choose-first PW-SAW mechanism is covered separately in
Section 4, which includes the corresponding analysis together with performance
results. Similarly, the check-first PW-RW/PW-SAW mechanisms are presented
in Section 5.

2 Model

Let us consider a randomly built network of N nodes and arbitrary topology,
whose nodes hold resources randomly placed in them. Resources are unique, i.e.,
there is a single instance of each resource in the network. The resource location
problem is defined as visiting the node that holds the resource, starting from
a certain node (the source node). For each search, the source node is chosen
uniformly at random among all nodes in the network.

The search mechanisms proposed in this paper exploit the idea of efficiently
building total random walks from partial random walks available at each node
of the network. This process comprises two stages:

(1) Partial Walks Construction. Every node i in the network precomputes a set
Wi of w random walks in an initial stage before the searches take place. Each
of these partial walks has length s, starting at i and finishing at a node reached
after s hops. In the PW-RW mechanism, the partial walks computed in this
stage are simple random walks. During the computation of each partial walk in
Wi, node i registers the resources held by the s first nodes in the partial walk
(from i to the one before the last node). As mentioned, for generality, we assume
that the resources found are stored in a Bloom filter. This information will be
used in Stage 2. Bloom filters are space-efficient randomized data structures to
store sets, supporting membership queries. Thus, the Bloom filter of a partial
walk can be queried for a given resource. If the result is negative, the resource is
not in any of the nodes of the partial walk. If the result is positive, the resource
is in one of the nodes of the partial walk, unless the result was a false positive,
which occurs with a certain probability p.2 The size of the Bloom filters can be
designed for a target (small) p considered appropriate. A variation of the partial
walk construction mechanism consists of using PWs that are self-avoiding walks
(SAW). The resulting mechanism, called PW-SAW, is analyzed in Section 4.

(2) The Searches. After the PWs are constructed, searches are performed in
the following fashion when the choose-first PW-RW/PW-SAW mechanisms are
used. When a search starts at a node A, a PW in WA is chosen uniformly at
random. Its Bloom filter is then queried for the desired resource. If the result is
negative, the search jumps to node B, the last node of that partial walk. The
process is then repeated at B, so that the search keeps jumping in this way
while the results of the queries are negative. When at a node C, the query to
the Bloom filter (of the PW randomly chosen from WC) gives a positive result,

2 More concretely, p is the probability of obtaining a positive result conditioned on
the desired resource not being in the filter.
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the search traverses that partial walk looking for the resource until the resource
is found or the partial walk is finished. If the resource is found, the search stops.
If the search reaches the last node D of the partial walk without having found
the resource in the previous nodes, it means that the result of the Bloom filter
query was a false positive. The search then randomly chooses a partial walk
in WD and decides whether to jump over it or to traverse it depending on the
result of the query to its Bloom filter, as described above. A variation of this
behavior consists of first checking all PWs of the node for the desired resource,
and then randomly choosing among the ones with a positive result. The resulting
mechanisms, called check-first PW-RW/PW-SAW are analyzed in Section 5.

In this work, we are interested in the number of hops to find a resource (when
PWs of length s are used), which is defined as the search length and denoted
Ls. Some of these hops are jumps (over PWs) and other are steps (traversing
PWs). In turn, we distinguish between trailing steps, if they are the ones taken
when the resource is found, and unnecessary steps, if they are taken when the
resource is not found. The search length is a random variable that takes different
values when independent searches are performed. The search length distribution
is defined as the probability distribution of the search length random variable.
We are interested in finding the expected search length, denoted Ls. Figure 1
summarizes the behavior of the search mechanisms.

Fig. 1. An example of search, using PWs of length s = 6

At this point, we emphasize the difference between the search just defined
and the total walk that supports it, consisting of the concatenation of partial
walks as defined above. Searches are shorter in length than their corresponding
total walks because of the number of steps saved in jumps over partial walks in
which we know that the resource is not located (although these saving may be
reduced by the unnecessary steps due to Bloom filter false positives).

3 Choose-First PW-RW

3.1 Analysis of Choose-First PW-RW

We make an additional assumption in order to simplify this analysis. Once a
PW has been used in the total walk of a search, it is never reused again in that
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total walk or in any other searches. Thus we guarantee that the total walks are
true random walks. This implies that in practice each node needs to have a large
number of precomputed partial walks (w), assumption that would compromise
the benefits of the proposed mechanism in practice. Simulations in Section 3.3
show that real cases with small w behave very similarly to the base case provided
by this analysis.

Let Ls be the random variable representing the number of hops in the search
(i.e., its length) when PWs of length s are used. The expected search length is
denoted by Ls. Let L be the random variable representing the number of hops
of the corresponding total walk. Its expected search length is denoted L. Making
use of the assumption that partial walks are never reused, L can be viewed as
the length of a search based on a simple random walk in the considered network,
and L as the expected search length of random walks in that network. Then, we
can state the following theorem:

Theorem 1. If the expected number of trailing steps is assumed to be uniformly
distributed in [0, s− 1]3, then the expected search length is:

Ls =

(
s

2
+

2L+ 1

2s
− 1

)
· (1− p) + L · p. (1)

Proof. Let P , J , U and T be random variables representing the number of partial
walks, jumps, unnecessary steps and trailing steps in a search, respectively. Their
expectations are denoted as P , J , U and T . Since hops in a search can be jumps,
unnecessary steps or trailing steps, it follows that, Ls = J + U + T. Then, the
expected search length for partial walks of size s is4 Ls = J + U + T .

The expected number of jumps can be obtained from the expected number
of partial walks in the search (P ) and from the probability of false positive (p)
as J = P · (1 − p), since J follows a binomial distribution B(P, 1 − p), where
the number of experiments is the random variable representing the number of
partial walks in a search (P ) and the success probability is the probability of
obtaining a negative result in a Bloom filter query (1 − p).5

For the expected number of unnecessary steps, U = P · p · s, since P · p is the
expected number of false positives in the search and each of them contributes
with s unnecesary steps. The number of partial walks in a search can be obtained
dividing the length of the total walk by the size of a partial walk: P =

⌊
L
s

⌋
=

L−T
s . Then, the expected number of partial walks in a search is P = L−T

s .

3 This is, in fact, a pessimistic assumption. The distribution of trailing steps is ap-
proximately uniform, but shorter walks have a slightly higher probability than longer
ones. This can be shown analytically and has been confirmed in our experiments (see
Appendix A in [11]). Therefore, the expected value in our analysis, derived from a
perfectly uniform distribution, is slightly higher than the real average value.

4 In the following, we make implicit use of the linearity properties of expectations of
random variables.

5 If Y is a random variable with a binomial distribution with success probability p, in
which the number of experiments is in turn the random variable X, it can be easily
shown that Y = X · p (see Appendix B in [11]).
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Since we assume that the expected number of trailing steps is uniformly dis-
tributed between 0 and (s− 1), its expectation is T = s−1

2 .
Using the previous equations we have:

Ls =

(
s

2
+

2L+ 1

2s
− 1

)
+ p ·

(
L−

(
s

2
+

2L+ 1

2s
− 1

))
, (2)

where the first term is the expectation of the search length for a “perfect” Bloom
filter (one that never returns a false positive) and the second term is the expec-
tation of the additional search length due to false positives.

Another interpretation of this expression is obtained if we reorganize it to
make explicit the contributions of a perfect filter and of a “broken” filter (one
that always returns a false positive result when the resource is not in the filter,
i.e., p = 1) as

Ls =

(
s

2
+

2L+ 1

2s
− 1

)
· (1− p) + L · p. (3)

From this theorem and using calculus, we have the following corollary.

Corollary 1. The optimal length of the partial walks, i.e., the length of the
partial walks that minimizes the expected search length, is:

sopt =
√
2L+ 1. (4)

The obtained value needs to be rounded to an integer, which is omitted in the
notation. Observe that the optimal length of the partial walks is independent
from the probability of false positives in the Bloom filters, while the expected
search length (Ls) does of course depend on it.

Corollary 2. The optimal expected search length, i.e., the expected search length
when partial walks of optimal length are used, is:

Lopt =
(√

2L+ 1− 1
)
(1 − p) + Lp = (sopt − 1) (1− p) + Lp. (5)

This result is an interesting relation between the optimal length of the search and
the optimal length of the PWs. If we consider perfect Bloom filters (p = 0), we
have Lopt = sopt − 1, which for large L (e.g. for large networks) becomes Lopt ≈
sopt. Therefore, we have found that, for large N and p = 0, the optimal expected
search length approximately equals the optimal length of the partial walks. For
arbitrary values of p, Equation 5 shows that Lopt is linear in p.

This completes the analysis of choose-first PW-RW. Appendix D in [11] pro-
vides an alternative analysis using a different approach. Instead of assuming
that the total walk is a random walk, it considers that it is built using the w
PWs available at each node, which avoids the need of L. On the other hand, the
alternative model does not provide expressions for Lopt or sopt.
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3.2 Cost of Precomputing PWs

Since searches use the partial walks precomputed by each of the nodes of the
network, the cost of this computation must be taken into account. We measure
this cost as the number of messages Cp that need to be sent to compute all the
PWs in the network. This quantity has been chosen to be consistent with our
measure of the performance of the searches. Indeed, each hop taken by a search
can be alternatively considered as a message sent. In addition, Cp is independent
from other factors like the processing power of nodes, the bandwidth of links and
the load of the network. The cost of precomputing a set of PWs can be simply
obtained as Cp = Nw(s+1), since each of the N nodes in the network computes
w partial walks, sending s messages to build each of them plus one extra message
to get back to its source node.

Let’s suppose that each node starts on the average b searches that are pro-
cessed by the network with the set of PWs precomputed initially. We define Cs

to be the total number of messages needed to complete those searches. If the
expected number of messages of a search is Ls + 1 (counting the message to get
back to the source node), we have that Cs = Nb(Ls + 1). Now, defining Ct as
the average total cost per search, we can write:

Ct =
Cs + Cp

Nb
= (Ls + 1) +

w

b
(s+ 1). (6)

The second term in Equation 6 is the contribution to the cost of the precomputa-
tion of the PWs. This contribution will remain small provided that the number
of searches per node in the interval is large enough.

3.3 Performance Evaluation

The goal of this section is to apply the model for choose-first PW-RW presented
in the previous section to real networks, and to validate its predictions with
data obtained from simulations. Three types of networks have been chosen for
the experiments: regular networks (constant node degree), Erdős-Rényi (ER)
networks and scale-free networks (with power law on the node degree). A network
of each type and sizeN = 104 has been randomly built with the method proposed
by Newman et al. [12] for networks with arbitrary degree distribution, setting
their average node degree to k = 10. Each network is constructed in three steps:
(1) a preliminary network is constructed according to its type; (2) its degree
distribution is extracted, and (3) the final (random) network is obtained feeding
the Newman method with that degree distribution. For each experiment, 106

searches have been performed, with the source node chosen uniformly at random
among the N nodes. Likewise, the resource has been placed in a node chosen
uniformly at random for each experiment.

Optimal PW Size and Expected Search Length in Choose-First
PW-RW. We start by applying Theorem 1 to the networks described above
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Fig. 2. (a) Expected search length (Ls) as a function of s when p = 0 in a regular
network, an ER network and a scale-free network. The optimal points (sopt, Lopt) for
each network are (150, 149), (157, 156), and (174, 173). (b) Optimal expected search
length (Lopt) as a function of p.

to obtain the expected search length as a function of the size of the PWs.6

Figure 2(a) provides plots of the expected search lengths (Ls) given by Equa-
tion 1 as a function of the size of the PWs (s), when the probability of a false
positive in the Bloom filter is set to p = 0, for the three types of networks con-
sidered. Results from the analytical model are shown as curves while simulation
data are shown as points. The curves for the three networks show a minimum
point (sopt, Lopt). This behavior is due to the fact that, when s is small, the
number of jumps needed to reach a PW containing the chosen resource grows,
therefore increasing the value of L. In turn, for larger values of s, the number of
trailing steps within the last PW grows, also increasing the value of L.

Figure 2(b) shows the linear relation between Lopt and p (Equation 5). The
regular network exhibits the smallest slope, followed by the ER network and
then by the scale-free network. For p = 0, Equation 5 degenerates to Lopt = L,
since the search performs all the hops of the total walk (i.e., it is a RW). In fact,
Equation 1 also degenerates to Ls = L in this case, meaning that the expected
search length is that of random walk searches regardless the size of the PWs (s).

Distributions of Search Lengths in Choose-First PW-RW. The aim of
this section is to experimentally explore how the use of PWs affects the statistical
distribution of search lengths.

6 For each network, the expected length of a random walk search (L) is needed. We es-
timate these simulating 106 simple random walk searches and averaging their lengths
for each network. Average search lengths are denoted in lowercase (l) to distinguish
them from the actual expected value (L) in the model. The values obtained are:
lreg = 11246, lER = 12338, and lsf = 15166). These results agree with the approx-
imate analytical method in [13] (a modification of the one provided in [5]), which
produces the following results: lreg = 11095, lER = 12191, and lsf = 14920.
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Fig. 3. Distributions of search lengths (histograms) with PWs that are not reused in
the regular network.

Length Distributions. We first obtain the lengths distributions of searches using
PWs that are never reused. Later in this section we will discuss the effect of hav-
ing a limited number of partial random walks that are reused. We consider each
random walk to be the total walk of a search based on PWs. For each original
random walk, we break it in pieces of size s, which are taken as the PWs that
make up the total walk. Then we consider a search that uses those PWs and
count the number of hops (jumps plus trailing steps plus unnecessary steps).
This gives the length of the search if it had been constructed using those (pre-
computed) PWs. Note that the PWs are not reused because they are obtained
from independent (real) random walks.

The search length distributions in the regular network for p = 0 and for
several values of s are shown in Figure 3(a). The average search lengths of each
distribution are also shown as vertical bars. These values are very close to the
expected values calculated with Equation 1 (L50 = 248.9, L150 = 149.0 and
L1000 = 510.2). Therefore, our model accurately predicts average lengths of
searches based on PWs of size s in the three types of networks considered.

The shape of the distributions is such that for low s (s = 50 in Figure 3(a))
search lengths are dominated by the number of jumps, which is proportional to
the length of the total walk. For high s (s = 1000 in Figure 3(a)) the distribution
adopts a rather uniform shape since search lengths are dominated by the number
of trailing steps, assumed to have an approximately uniform distribution between
0 and s − 1. The optimal length for the PWs, sopt (s = 150 in Figure 3(a)),
represents a transition point between these two effects. The shape is such that
the values around the average search length (which approximately equals sopt,
according to Equation 5) are also the most frequent.

Once it has been found the optimal length for the PWs sopt (known to be
independent of p), we investigate the effect of the probability of false positive of
Bloom filters in these distributions. Figure 3(b) shows the distributions of search
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lengths (histograms) for the regular network when s = sopt and for several values
of p. It can be seen that the distributions get wider and lower as p grows, pushing
average search lengths to higher values, in accordance with Figure 2(b). However,
we observe that the most frequent lengths remain the same regardless of the
value of p. For p = 0, the most frequent value for each network approximately
equals the average search length which, in turn, approximately equals the optimal
length of the PWs (sopt = 150 for the regular network). For greater values of p,
the average search length grows while the most frequent value stays the same.
Distributions for the ER and the scale-free networks have similar shapes and are
omitted here. However, they have been used in Table 1(a) (explained below).

Effect of Reusing PWs. At this point, we note that we have been assuming that
PWs are never reused. However, in practical scenarios it seems quite reasonable
to consider a limited number of partial random walks that are reused. In Ap-
pendix F of [11] we have explored the distributions of search lengths when the
total walks are built reusing a limited number w of PWs precomputed in each
node. As it can be readily seen there, we conclude that, for the types of networks
in our experiment, just two precomputed PWs per node are enough to obtain
searches whose lengths are statistically similar to those that would be obtained
with PWs that are not reused. So, we can say that our results using not reused
PWs are also valid when using a limited number of PWs that are reused.

Comparison of Performance with Respect to Random Searches. Fi-
nally, in Table 1(a) we compare the performance of the proposed mechanism
and that of random walk searches. The reduction in the average search length
that PW-RW achieves with respect to simple random walks is lower for higher
p, ranging from around 98% in the case when p = 0 to 88% when p = 0.1.
Furthermore, we also see that the achieved reductions are independent of the
network type.

Table 1. Reductions of average search lengths

(a) PW-RW with respect to random
walk searches

Reduction of l (%)

Network type p = 0 p = 0.01 p = 0.1

Regular 98.67 97.68 88.73
ER 98.71 97.68 88.42
Scale-free 98.83 97.79 88.43

(b) PW-SAW with respect to PW-RW

Reduction of l (%)

Network type p = 0 p = 0.01 p = 0.1

Regular 5.67 8.22 11.24
ER 6.25 9.10 11.88
Scale-free 6.53 9.75 12.65

4 Choose-First PW-SAW

As it was pointed in Section 2 when describing the PW construction mechanism,
a possible variation consists of using self-avoiding walks (SAW) instead of RWs.



Improving Resource Location with Locally Precomputed Partial RWs 155

The resulting mechanism is called PW-SAW. The aim is to revisit less nodes,
increasing the chances of locating the resource. In short, a SAW chooses the
next node to visit uniformly at random among the neighbors that have not been
visited so far by the walk. If all neighbors have already been visited, it chooses
uniformly at random among all neighbors, like a simple random walk.

Analysis of Choose-First PW-SAW. When PWs are self-avoiding walks, their
concatenation is not a random walk, and hence Theorem 1 is no longer valid.
We state a new theorem here for the choose-first PW-SAWmechanism and prove
it in Appendix C of [11] using a different approach.

Theorem 2. If the expected number of trailing steps is assumed to be uniformly
distributed in [0, s− 1], then the expected search length of PW-SAW is

Ls =
1

N

∑
k

nk

(
1

ptp(k)
· (pn(k) + s · pfp(k)) + s− 1

2

)
. (7)

In the above theorem, pn, ptp, and pfp are the probabilities that the query of
the Bloom filter of the chosen PW in the current node returns a (true) negative,
a true positive, and a false positive result, respectively, as a funcion of k, the
degree of the node holding the resource. The proof in Appendix C of [11] gives
expressions for these probabilities.

Expected Search Length in PW-SAW. In this section, we compare the analytic
results from the model with experimental data from simulations. Figure 4(a)
shows the expected search length (Ls) as a function of the size of PWs (s) in a
regular network, an ER network and a scale-free network, for p = 0. The curves
in this graph are plotted using the equations in Appendix C of [11]).

According to the results computed using the PW-SAW model, the minimum
search lengths occur for values around s = 141, s = 149 and s = 167 for
the regular, ER and scale-free networks, respectively. These values are slightly
lower than the ones predicted by the PW-RW model (Figure 2(a)), which were
sopt = 150, 157 and 174, respectively.

Both the model curves and the simulation experiments have been computed
for w = 5, chosen as a reference value. However, it has been observed that very
similar results are obtained if we change the value of w. Furthermore, plots of
the model equations for different values of w are coincident. This behavior was
also observed for PW-RW (Section 3.3), where we found that the average search
length remained almost constant as we increased w. The reason for this is that
the probability of the resource being in the chosen PW does not depend on the
number of PWs in the node.

We now compare the results of the PW-RW and PW-SAW mechanisms. Fig-
ure 4(b) shows results for PW-RW (left part) and for PW-SAW (right part), in
the three networks considered in our study, and for values of p = 0, 0.01 and
0.1. Expected search lengths from the analytical models are shown as vertical
bars, while average search lengths from the simulations experiments are shown
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Fig. 4. Expected search length of PW-SAW in a regular network, an ER network and
a scale-free network

as points. The size of the PWs has been set to s = 150, 157 and 174 for the
regular, ER and scale-free networks, respectively, which are the optimal values
predicted by the PW-RW model. For all the networks, we have found a very
good correspondence between model predictions and simulation results.

Comparison of Performance with Choose-First PW-RW. The reduction in the
average search length that PW-SAW achieves with respect to PW-RW for a
given p is largest for the scale-free network, followed by the ER network and
then by the regular network. For each network type, the reduction is larger for
higher p. Actual values can be found in Table 1(b).

5 Check-First PW-RW and PW-SAW

We now present the check-first versions of the PW-RW and PW-SAW mecha-
nisms, introduced in Section 2. Suppose the search is currently in a node and
it needs to pick one of the PWs in that node to decide whether to traverse it
or to jump over it. In the check-first mechanisms, it first checks the associated
resource information of all the PWs, and then randomly chooses among those
with a positive result, if any (otherwise, it chooses among all PWs, as the choose-
first version). Performance is improved since the probability of choosing a PW
with the resource increases. This comes at the expense of slightly incrementing
the processing power used since several PWs need to be checked, but without
incurring extra storage space costs.

A minor additional difference between the algorithms is that in the check-first
version, the resource information is registered from the first node (the node next
to the current node) to the last node in the PW. This change slightly improves
the performance of the new version, since the probability of choosing a PW with
the resource increases also in the cases where the resource is held by the last
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node of the PW. We have adapted the analysis presented in Section 4 to reflect
the new behavior of the check-first mechanisms (see Appendix E of [11]).

Expected Search Length in Check-First PW-RW/PW-SAW. Figure 5 shows the
expected search length (Ls) vs. the size of PWs (s) in a regular network for the
four mechanisms presented, for p = 0.01 and w = 5. The check-first mechanisms
achieve a lower minimum expected search length than the original choose-first
mechanisms, as expected. In fact, the expected search length can be lowered
further by increasing w, the number of PWs per node, clearly at the expense
of increasing the cost of the PWs construction stage. In addition, the minimum
expected search length occurs for significantly lower s (sopt falls from 150 to
about 50), meaning shorter PWs in the nodes, which in turn decreases the cost
of the PWs construction stage. As for the PW-SAW mechanisms, we note that
both versions achieve a slight decrease in the expected search length with respect
to their PW-RW counterparts (which was already observed in Table 1). Results
for the ER and scale-free networks are similar and are omitted here.
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6 Future Work

The proposed mechanisms could be improved with new strategies to choose from
the PWs at the nodes. Smarter variants of RWs could be used as PWs. It would
be interesting to compare their application to unstructured P2P networks with
algorithms for structured overlays like DHT or quorum systems.
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