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A  distributed  algorithm  is proposed  for sampling  networks,  so  that  nodes  are selected  by  a special  node
(source),  with  a  given  probability  distribution.  We  define  a new  class  of random  walks,  that  we call
Random  Centrifugal  Walks  (RCW).  A  RCW  starts  at the source  and  always  moves  away  from  it.

The algorithm  assumes  that each  node  has  a weight,  so  the  nodes  are  selected  with  a probability  propor-
tional  to  its  weight.  It requires  a preprocessing  phase  before  the  sampling  of  nodes.  This  preprocessing  is
eywords:
ode sampling
andom walks
andomized algorithms
istributed algorithms

done  only  once,  regardless  of the number  of sources  and  the  number  of samples  taken  from  the  network.
The  length  of RCW  walks  are  bounded  by  the  network  diameter.

The  RCW  algorithms  that  do  not  require  preprocessing  are  proposed  for grids  and networks  with regular
concentric  connectivity,  for  the  case  when  the probability  of  selecting  a node  is  a function  of  its distance
to  the  source.
. Introduction

Sampling a network with a given distribution has been identi-
ed as a useful operation in many contexts. For instance, sampling
odes with uniform probability is the building block of epidemic

nformation spreading [13,14]. Similarly, sampling with a prob-
bility that depends on the distance to a given node [3,20] is
seful to construct small world network topologies [2,7,16]. Other
pplications that can benefit from distance-based node sampling
re landmark-less network positioning systems like NetICE9 [19],
hich does sampling of nodes with special properties to assign syn-

hetic coordinates to nodes. In a different context, currently there
s an increasing interest in obtaining a representative (unbiased)
ample from the users of online social networks [9]. In this paper
e propose a distributed algorithm for sampling networks with a
esired probability distribution.

.1. Related work

One technique to implement distributed sampling is to use
ossiping between the network nodes. Jelasity et al. [13] imple-

ented a uniform sampling service using gossip-based epidemic

lgorithms. Kermarrec et al. [15] analyze a generic peer uniform
ampling service with small views and independence. Bertier et al.
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[2] implement uniform sampling and DHT services using gossip-
ing. As a side result, they sample nodes with a distribution that
is close to Kleinberg’s harmonic distribution (one instance of a
distance-dependent distribution). Another gossip-based sampling
service that gets close to Kleinberg’s harmonic distribution has been
proposed by Bonnet et al. [3]. As far as we know, there is no gossip-
based sampling algorithm that is able to sample with an arbitrary
probability distribution. Moreover, when using gossip-based uni-
form distributed sampling as a service, it has been shown by Busnel
et al. [5] that only partial independence (�-independence) between
views (the subsets of nodes held at each node) can be guaranteed
without re-executing the gossip algorithm. They show that, in order
to achieve �-independence between two  consecutive samples at
the same node, at least �(log(1/�)) shuffle rounds must be per-
formed. Each shuffle round involves exchanging �(n) messages
(where n is the network size). Gurevich and Keidar [11] give an
algorithm that achieves �-independence between uniform samples
in O(ns log n) transformations (i.e., shuffle operations), even in the
presence of messages loss, where s is the view size.

Another popular distributed technique to sample a network is
the use of random walks [23]. Most random-walk based samp-
ling algorithms do uniform sampling [1,9], usually having to deal
with the irregularities of the network. Sampling with arbitrary
probability distributions can be achieved with random walks by
re-weighting the hop probabilities to correct the sampling bias

caused by the non-uniform stationary distribution of the ran-
dom walks. Lee et al. [17] proposed two new algorithms based
on Metropolis–Hastings (MH) random walks for sampling with
any probability distribution. These algorithms provide an unbiased

dx.doi.org/10.1016/j.jocs.2015.09.001
http://www.sciencedirect.com/science/journal/18777503
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Table 1
Success rate of the AAP algorithm as a function of the con-
nectivity angle.

Angle % success

15◦ 0%
30◦ 0%
45◦ 3%
60◦ 82%
75◦ 99%
90◦ 100%
A. Sevilla et al. / Journal of Com

raph sampling with a small overhead, and a smaller asymptotic
ariance of the resulting unbiased estimators than generic MH  ran-
om walks.

Sevilla et al. [20] have shown how sampling with an arbitrary
robability distribution can be done without communication if a
niform sampling service is available. In that work, as in all the pre-
ious approaches, the desired probability distribution is reached
hen the stationary distribution of a Markov process is reached.

he number of iterations (or hops of a random walk) required to
each this situation (the warm-up time) depends on the parameters
f the network and the desired distribution, but it is not negligible.
or instance, Zhong and Sheng [23] found by simulation that, to
chieve no more than 1% error, in a torus of 4096 nodes at least
00 hops of a random walk are required for the uniform distribu-
ion, and 500 hops are required for a distribution proportional to
he inverse of the distance. Similarly, Gjoka et al. [10] show that a

HRW sampler needs about 6K samples (or 1000–3000 iterations)
o obtain the convergence to the uniform probability distribution.
n the light of these results, Markovian approaches seem to be ineffi-
ient to implement a sampling service, specially if multiple samples
re desired.

.2. Contributions

In this paper we present efficient distributed algorithms to
mplement a sampling service. The basic technique used for samp-
ing is a new class of random walks that we call Random Centrifugal

alks (RCW). A RCW starts at a special node, called the source,  and
lways moves away from it.

All the algorithms proposed here are instances of a generic algo-
ithm that uses the RCW as basic element. This generic RCW-based
lgorithm works essentially as follows. A RCW always starts at the
ource node. When the RCW reaches a node x (the first node reached
y a RCW is always the source s), the RCW stops at that node with a
bsorption probability.  If the RCW stops at node x, then x is the node
elected by the sampling. If the RCW does not stop at x, it jumps to

 neighbor of x. To do so, the RCW chooses only among neighbors
hat are farther from the source than the node x. (The probability
f jumping to each of these neighbors is not necessarily the same.)
n the rest of the paper we will call all the instances of this generic
lgorithm as RCW algorithms.

Firstly, we propose a RCW algorithm that samples any con-
ected network with any probability distribution (given as weights
ssigned to the nodes). Before starting the sampling, a prepro-
essing phase is required. This preprocessing involves building a
inimum distance spanning tree (MDST) in the network,1 and

sing this tree for efficiently aggregating the node’s weights. As
 result of the weight aggregation, each node has to maintain one
umerical value per link, which will be used by the RCW later. Once
he preprocessing is completed, any node in the network can be the
ource of a sampling process, and multiple independent samplings
ith the exact desired distribution can be efficiently performed.

ince the RCW used for sampling follow the MDST, they take at
ost D hops (where D is the network diameter).
Secondly, when the probability distribution is distance-based

nd the nodes are at integral distances from the source, RCW algo-
ithms without preprocessing (and only a small amount of state
ata at the nodes) are proposed. In a distance-based probability dis-
ribution all the nodes at the same distance from the source node are

elected with the same probability. (Observe that the uniform and
leinberg’s harmonic distributions are special cases of distance-
ased probability distributions.) In these networks, each node at

1 Using, for instance, the algorithm proposed by Bui et al. [4] whose time com-
lexity is O(n) and O(n · m)  message complexity.
150◦ 100%
180◦ 100%
360◦ 100%

distance k > 0 from the source has neighbors (at least) at distance
k − 1. We  can picture nodes at distance k from the source as pos-
itioned on a ring at distance k from the source. The center of all the
rings is the source, and the radius of each ring is one unit larger than
the previous one. Using this graphical image, we  refer the networks
of this family as concentric rings networks.

This concentric rings topology can be naturally found in real
networks. For instance, consider a wireless sensor network in
which each node has a fixed known position assigned (e.g., via
GPS). Then, fixing a source node, the nodes in the kth concentric
rings can be the nodes whose (Euclidean) distance to the source is
in the interval (k − 1, k]. If the communication radius is reasonably
large, the requirements of the concentric rings topology model will
be satisfied.

The first distance-oriented RCW algorithm we propose samples
with a distance-based distribution in a network with grid topology.
The grid topology has been identified as an efficient deployment
pattern in wireless sensor networks [22]. In this network topology,
the source node is at position (0, 0) and the lattice (Manhattan) dis-
tance is used. This grid contains all the nodes that are at a distance
no more than the radius R from the source (the grid has hence a
diamond shape2). The algorithm we  derive assigns an absorption
probability to each node, that only depends on its distance from the
source. However, the hop probabilities depend on the position (i, j)
of the node and the position of the neighbors to which the RCW can
jump to. We  formally prove that the desired distance-based samp-
ling probability distribution is achieved. Moreover, since every hop
of the RCW in the grid moves one unit of distance away from the
source, the sampling is completed after at most R hops.

We have proposed a second distance-oriented RCW algorithm
that samples with distance-based distributions in concentric rings
networks with uniform connectivity. These are networks in which
all the nodes in each ring k have the same number of neighbors in
ring k − 1 and the same number in ring k + 1. Like the grid algorithm,
this variant is also proved to finish with the desired distribution in
at most R hops, where R is the number of rings.

Unfortunately, in general, concentric rings networks have no
uniform connectivity. This case is faced by creating, on top of the
concentric rings network, an overlay network that has uniform
connectivity. In the resulting network, the algorithm for uniform
connectivity can be used. We  propose a distributed algorithm that,
if it completes successfully, builds the desired overlay network. We
have found via simulations that this algorithm succeeds in building
the overlay network in a large number of cases (see Table 1).

In summary, RCW can be used to implement an efficient samp-
ling service because, unlike previous Markovian (e.g., classical
random walks and epidemic) approaches, (1) it always finishes in

a number of hops bounded by the network diameter, (2) selects a
node with the exact probability distribution, and (3) does not need
warm-up (stabilization) to converge to the desired distribution.

2 A RCW algorithm for a square grid can be derived from the one presented.
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the spanning tree. In particular, it is interesting to build a minimum
diameter spanning tree (MDST) because, as mentioned, the length
of the RCW is upper bounded by the tree diameter. There are few
6 A. Sevilla et al. / Journal of Com

dditionally, in the case that preprocessing is needed, this only has
o be executed once, independently on the number of sources and
he number of samples taken from the network.

For instance, gossiping algorithms require a time complexity
f �(log(1/�)) rounds in which a total number of �(n log(1/�))
essages are exchanged to obtain two consecutive �-independent

niform samples at a given node [5]. On the other hand, RCW can
tart multiple independent samples in parallel, if desired, and each
ample involves at most D + 1 rounds and messages.

The rest of the paper is structured as follows. In Section 2 we
ntroduce concepts and notation that will be used in the rest of
he paper. In Section 3 we  present the RCW algorithm for a con-
ected network. In Sections 4–7 we describe the RCW algorithm
n grids and concentric rings networks with and without uniform
onnectivity. In Section 8 we present the simulation results for all
escribed algorithms. Finally, we conclude the paper in Section 9.

. Definitions and model

.1. Connected networks

In this paper we only consider connected networks. This family
ncludes most of the potentially interesting networks we can find.
n every network, we use N to denote the set of nodes and n = |N|
he size of that set. When convenient, we assume that there is a
pecial node in the network, called the source and denoted by s. We
ssume that each node x ∈ N has an associated weight w(x) > 0.
urthermore, each node knows its own weight. The weights are
sed to obtain the desired probability distribution p, so that the
robability of selecting a node x is proportional to w(x). Let us
enote � =

∑
j∈Nw(j). Then, the probability of selecting x ∈ N is

(x) = w(x)/�. (In the simplest case, weights are probabilities, i.e.,
(x) = p(x), ∀x and � = 1.)

As mentioned, in order to use RCW to sample connected
etworks, some preprocessing is done. This involves constructing

 spanning tree in the network and performing a weight aggrega-
ion process. After the preprocessing, RCW is used for sampling. A
CW starts from the source. When the RCW reaches a node x ∈ N, it
elects x as the sampled vertex with probability q(x), which we call
he absorption probability.  If x is not selected, a neighbor y of x in
he tree is chosen, using for that a collection of hop probabilities h(x,
). The values of q(x) and h(x, y) are computed in the preprocessing
nd stored at x. The probability of reaching a node x ∈ N in a RCW is
alled the visit probability,  denoted v(x).

.2. Concentric rings networks

We  also consider a subfamily of the connected networks, which
e call concentric rings networks. These are networks in which the
odes of N are at integral distances from s. In these networks, no
ode is at a distance from s larger than a radius R. For each k ∈ [0, R],
e use Rk /= ∅ to denote the set of nodes at distance k from s, and

k = |Rk|. (Observe that R0 = {s} and n0 = 1) These networks can be
een as a collection of concentric rings at distances 1 to R from the
ource, which is the common center of all rings. For that reason, we
all the set Rk the ring at distance k. For each x ∈ Rk and k ∈ [1, R],
k(x) > 0 is the number of neighbors of node x at distance k − 1 from

 (which is only 1 if k = 1), and ık(x) is the number of neighbors of
ode x at distance k + 1 from s (which is 0 if k = R).

The concentric rings networks considered must satisfy the addi-
ional property that the probability distribution is distance based.

his means that, for all k ∈ [0, R], every node x ∈ Rk has the same
robability pk to be selected. We assume that each node x ∈ Rk

nows its own pk. These properties allow, in the subfamilies defined
elow, to avoid the preprocessing required for connected networks.
ional Science 11 (2015) 34–45

2.2.1. Grids
A first subfamily of concentric rings networks considered is the

grid with lattice distances. In this network, the source is at position
(0, 0) of the grid, and it contains all the nodes (i, j) so that i, j ∈ [− R,
R] and |i| + |j| ≤ R. For each k ∈ [0, R], the set of nodes in ring k is
Rk = {(i, j) : |i| + |j| = k}. The neighbors of a node (i, j) are the nodes
(i − 1, j), (i + 1, j), (i, j − 1), and (i, j + 1) (that belong to the grid).

2.2.2. Uniform connectivity
The second subfamily considered is the set of concentric rings

networks with uniform connectivity. These networks satisfy that

∀k ∈ [1,  R], ∀x, y ∈ Rk, ık(x) = ık(y) ∧ �k(x) = �k(y). (1)

In other words, all nodes of ring k have the same number of neigh-
bors ık in ring k + 1 and the same number of neighbors �k in ring
k − 1.

The behavior of a generic RCW was  already described. In the
algorithm that we  will present in this paper for concentric rings
networks we guarantee that, for each k, all the nodes in Rk have
the same visit probability vk and the same absorption probability
qk. A RCW starts from the source. When it reaches a node x ∈ Rk, it
selects x as the sampled vertex with absorption probability qk. If x
is not selected, a neighbor y ∈ Rk+1 of x is chosen.

The desired distance-based probability distribution is given by the
values pk, k ∈ [0, R], where it must hold that

∑R
k=0nk × pk = 1. The

problem to be solved is to define the absorption and hop probabil-
ities so that the probability of a node x ∈ Rk is pk.

Observation 1. If for all k ∈ [0, R] the visit vk and absorption qk prob-
abilities are the same for all the nodes in Rk , the RCW samples with the
desired probability iff pk = vk · qk .

3. Sampling in a connected network

In this section, we present a RCW algorithm that can be used
to sample any connected network. As mentioned, in addition to
connectivity, it is required that each node knows its own weight. A
node will be selected with probability proportional to its weight.

3.1. Preprocessing for the RCW algorithm

The RCW algorithm for connected networks requires some pre-
processing which will be described now. This preprocessing has to
be done only once for the whole network, independently of which
nodes act as sources and how many samples are taken.

3.1.1. Building a spanning tree
Initially, the algorithm builds a spanning tree of the network.

A feature of the algorithm is that, if several nodes want to act as
sources for RCW, they can all share the same spanning tree. Hence,
only one tree for the whole network has to be built. The algorithm
used for the tree construction is not important for the correctness
of the RCW algorithm, but the diameter of the tree will be an upper
bound on the length of the RCW (and hence possibly on the samp-
ling latency). There are several well known distributed algorithms
(see e.g., [6] and the references therein) that can be used to build
distributed algorithms in the literature to build a MDST. One possi-
ble candidate to be used in our context is the one proposed by Bui
et al. [4]. Additionally, if link failures are expected, the variation of
the former algorithm proposed by Gfeller et al. [8] can be used.
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Fig. 1. Weight aggregation algorithm. Code for node i.

.1.2. Weight aggregation
Once the spanning tree is in place, the nodes compute and store

ggregated weights using the algorithm of Fig. 1. The algorithm
xecutes at each node i ∈ N, and it computes in a distributed way
he aggregated weight of each subtree that can be reached following
ne of the links of i. In particular, for each node x that is in the set
f neighbors of i in the tree, neighbors(i), the algorithm computes a
alue Ti(x) and stores it at i. Let (i, x) be a link of the spanning tree,
hen by removing the link (i, x) from the spanning tree there are
wo subtrees. We  denote by stree(x, i) the subtree out of them that
ontains node x.

heorem 1. After the completion of the Weight Aggregation
lgorithm (of Fig. 1), each node i ∈ N will store, for each node

 ∈ neighbors(i), in Ti(x) the value
∑

y∈stree(x,i)w(y).

roof. Consider stree(x, i) a tree rooted at x. We  prove the claim
y induction in the depth of this tree. The base case is when the
ree has depth 1. In this case x is a leaf and, from the algorithm, it
ends to i its weight w(x), which is stored at i as Ti(x). If the depth is

 > 1, by induction hypothesis x ends up having in Tx(y) the sum of
he weight of the subtree stree(x, y), for each y ∈ neighbors(x) \ {i}.
hese values plus w(x) are added up and sent to i, which stores the
esulting value as Ti(x). �

The values Ti(x) computed in this preprocessing phase will later
e used by the RCW algorithm to perform the sampling. The com-
lexity of this process in terms of messages exchanged is 2(n  − 1),
nd the time complexity in rounds is D. We  assume that all nodes
tart running the Weight Aggregation algorithm simultaneously,
hat the transmission of messages takes one step, and that compu-
ation time is negligible.

heorem 2. The Weight Aggregation algorithm (of Fig. 1) requires
(n − 1) messages to be exchanged, and completes after D steps, where

 is the diameter of the tree.

roof. It is easy to observe in the algorithm that one message is
ent across each link in each direction. Since all spanning trees have

 − 1 links, the first part of the claim follows.
The second claim can be shown to be as follows. Let us consider

ny node i as the root of the spanning tree. Let d be the largest
istance in the tree of any node from i. We  show by induction
n k that all nodes at distance d − k from i have received the
ggregated weight of their corresponding subtrees by step k. The
ase case is k = 1, which follows since the leaves at distance d send
heir weights to their parents in the first step. Consider now any
non-leaf) node j at distance d − k + 1 from i. Assume that y is the

arent (at distance d − k) of j in the tree rooted at i. By induction
ypothesis j has received all the aggregated weights of the subtrees
y step k − 1. Then, when the latest such value was received from

 neighbor x (Line 8), the foreach loop (Lines 10-13) is executed. In
Fig. 2. RCW algorithm for connected networks. Code for node i.

this execution, the condition of the if statement at Line 11 is satis-
fied for y. Then, the aggregated weight w(j) +

∑
z∈neighbors(j)\{y}Tj(z)

is sent to y by step k − 1. This value reaches y in one step, by step
k. Then, i receives all the aggregated weights by step d. Since the
largest value of d is D, the proof is complete. �

3.2. RCW sampling algorithm

In this RCW algorithm (Fig. 2) any node can be the source. The
spanning tree and the precomputed aggregated weights are used
by any node to perform the samplings (as many samples as needed).
The sampling process in the RCW algorithm works as follows.
To start the process, the source s sends a message RCW MSG(s)
to itself. When the RCW MSG(s) message is received by a node
i from a node x, it computes a set of candidates for next hop
in the RCW, which are all the neighbors of i except x. Then, the
RCW stops and selects that node with an absorption probability
q(i) = w(i)

w(i)+
∑

z∈candidates
Ti(z)

(Line 4). If the RCW does not select i, it

jumps to a neighbor of i different from x. To do so, the RCW chooses
only among nodes y in the set of candidates (that move away from
s) using h(i, y) = Ti(y)∑

z∈candidates
Ti(z)

as hop probability (Line 8).

3.3. Analysis

We show now that the algorithm proposed performs sampling
with the desired probability distribution.

Theorem 3. Each node i ∈ N is selected by the RCW algorithm with
probability p(i) = w(i)

� .

Proof. If a node i receives the RCW MSG(s) from x, let us define
candidates = neighbors(i) \ {x}, and T(i) = w(i) +

∑
z∈candidatesTi(z).

We prove the following stronger claim: Each node i ∈ N is visited by
the RCW with probability v(i) = T(i)

� and selected by the RCW algo-

rithm with probability p(i) = w(i)
� . We  prove this claim by induction

on the number of hops from the source s to node i in the spanning
tree. The base case is when the node i is the source s. In this case x is
also s, candidates = neighbors(s), and T(s) = �. Hence, v(s) = T(s)

� = 1

and q(s) = w(s)
� , yielding p(s) = w(s)

� .
The induction hypothesis assumes the claim is true for a node

x at distance k from s, and proves the claim for i which is at
distance k + 1. We  have that Pr[visit i] = v(x) (1 − q(x)) T(i)

T(x)−w(x) ,

where 1 − q(x) is the probability of not selecting node x when vis-
iting it, and T(i)

T(x)−w(x) is the probability of choosing the node i in
the next hop of the RCW. The absorption probability of x and i are
q(x) = w(x)/T(x) and q(i) = w(i)/T(i), respectively (Line 4). Then,

v(i) = T(x)

�

(
1 − w(x)

T(x)

)
T(i)

T(x)−w(x) = T(x)
�

(
T(x)−w(x)

T(x)

)
T(i)

T(x)−w(x) = T(i)
� and

Pr[select i] = v(i)q(i) = T(i)
�

w(i)
T(i) = w(i)

� . �
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. Sampling in a Grid

If the algorithm for connected networks is applied to a grid,
iven its regular structure, the construction of the spanning tree
ould be done without any communication among nodes, but the
eight aggregation process has to be done as before. However, we

how in this section that all preprocessing and the state data stored
n each node can be avoided if the probability distribution is based
n the distance. RCW sampling process was described in Section
, and we only redefine absorption and hop probabilities. From
bservation 1, the key for correctness is to assign absorption and
op probabilities that guarantee visit and absorption probabilities
hat are homogenous for all the nodes at the same distance from
he source.

.1. Absorption probability

For k ∈ [0, R], the absorption probability of every node (i, j) ∈ Rk

s defined as

k = nk · pk∑R
j=knj · pj

= nk · pk

1 − ∑k−1
j=0 nj · pj

. (2)

As required by Observation 1, all nodes in Rk have the same qk.
ote that q0 = p0 and qR = 1, as one may  expect. Since the value of pk

s known at (i, j) ∈ Rk, nk can be readily computed,3 and the value
f
∑k−1

j=0 nj · pj can be piggybacked in the RCW, the value of qk can
e computed and used at (i, j) without requiring precomputation
or state data.

.2. Hop probability

In the grid, the hops of a RCW increase the distance from the
ource by one unit. We  want to guarantee that the visiting prob-
bility is the same for each node at the same distance, to use
bservation 1. To do so, we need to observe that nodes (i, j) over

he axes (i.e., with i = 0 or j = 0) have to be treated as a special case,
ecause they can only be reached via a single path, while the other
odes can be reached via several paths. To simplify the presenta-
ion, and since the grid is symmetric, we give the hop probabilities
or one quadrant only (the one in which nodes have both coor-
inates non-negative). The hop probabilities in the other three
uadrants are similar. The first hop of each RCW chooses one of
he four links of the source node with the same probability 1/4.

e have three cases when calculating the hop probabilities from a
ode (i, j) at distance k, 0 < k < R, to node (i′, j′).

Case A: The edge from (i, j) to (i′, j′) is in one axis (i.e., i = i′ = 0 or
j = j′ = 0). The hop probability of this link is set to hk((i, j), (i′, j′)) =

i+j
i+j+1 = k

k+1 .
Case B: The edge from (i, j) to (i′, j′) is not in the axes, i′ = i + 1, and
j′ = j. The hop probability of this link is set to hk((i, j), (i + 1, j)) =

2i+1
2(i+j+1) = 2i+1

2(k+1) .
Case C: The edge from (i, j) to (i′, j′) is not in the axes, i′ = i, and
j′ = j + 1. The hop probability of this link is set to hk((i, j), (i, j +
1)) = 2j+1

2(i+j+1) = 2j+1
2(k+1) .
t is easy to check that the hop probabilities of a node add up to one.

3 n0 = 1, while nk = 4k for k ∈ [1, R].
ional Science 11 (2015) 34–45

4.3. Analysis

Below we prove that the RCW that uses the above absorption
and hop probabilities selects nodes with the desired sample prob-
ability.

Lemma  4. All nodes at the same distance k ≥ 0 to the source have
the same visit probability vk .

Proof. The proof uses induction. The base case is k = 0, and
obviously vk = 1. When k = 1, the probability of visiting each of the
four nodes at distance 1 from the source s is vi = 1−q0

4 , where 1 − q0
is the probability of not staying at source node. Assuming that all
nodes at distance k > 0 have the same visit probability vk, we  prove
the case of distance k + 1. Recall that the absorption probability is
the same qk for all nodes at distance k.

The probability to visit a node x = (i′, j′) at distance k + 1 depends
on whether x is on an axis or not. If it is in one axis it can only be
reached from its only neighbor (i, j) at distance k. This happens with
probability (case A) Pr[visit x] = vk(1 − qk) i+j

i+j+1 = vk(1 − qk) k
k+1 . If

x is not on an axis, it can be reached from two nodes, (i′ − 1, j′) and (i′,
j′ − 1), at distance k (Cases B and C). Hence, the probability of reach-
ing x is then Pr[visit x] = vk(1 − qk) 2(i′−1)+1

2(i′+j′) + vk(1 − qk) 2(j′−1)+1
2(i′+j′) =

vk(1 − qk) k
k+1 . Hence, in both cases the visit probability of a node x

at distance k + 1 is vk+1 = vk(1 − qk) k
k+1 . This proves the induction

and the claim. �

Theorem 5. Every node at distance k ∈ [0, R] from the source is
selected with probability pk.

Proof. If a node is visited at distance k, it is because no node was
selected at distance less than k, since a RCW always moves away
from the source. Hence, Pr[∃x ∈ Rk visited] = 1 −

∑k−1
j=0 njpj. Since

all the nk nodes in Rk have the same probability to be visited (see

the previous lemma), we  have that vk =
1−

∑k−1

j=0
njpj

nk
. Now, since all

the nk nodes in Rk have the same absorption probability is qk, the
probability of selecting a particular node x at distance k from the

source is Pr[select x] = vkqk =
1−

∑k−1

j=0
njpj

nk

nkpk∑R

j=k
njpj

= pk, where it

has been used that (1 −
∑k−1

j=0 njpj) =
∑R

j=knjpj . �

5. Sampling in a concentric rings network with uniform
connectivity

In this section we  derive a RCW algorithm to sample a concentric
rings network with uniform connectivity, where all preprocessing
is avoided, and only a small (and constant) amount of data is stored
in each node. Recall that uniform connectivity means that all nodes
of ring k have the same number of neighbors ık in ring k + 1 and the
same number of neighbors �k in ring k − 1.

5.1. Distributed algorithm

The general behavior of the RCW algorithm for these networks
was described in Section 2. In order to guarantee that the algorithm
is fully distributed, and to reduce the amount of data a node must
know a priori, a node at distance k that sends the RCW to a node
in ring k + 1 piggybacks some information. In more detail, when a
node in ring k receives the RCW from a node of ring k − 1, it also
receives the probability vk−1 of the previous step, and the values

pk−1, nk−1, and ık−1. Then, it calculates the values of nk, vk, and qk.
After that, the RCW algorithm uses the absorption probability qk to
decide whether to select the node or not. If it decides not to select
it, it chooses a neighbor in ring k + 1 with uniform probability. Then,
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ig. 3. RCW algorithm for concentric rings with uniform connectivity (code for node
 ∈ Rk , k > 0).

t sends to this node the probability vk and the values pk, nk, and ık,
n the message of the RCW.

The RCW algorithm works as follows. The source s selects itself
ith probability q0 = p0. If it does not do so, it chooses one node

n ring 1 with uniform probability, and sends it the RCW mes-
age with values v0 = 1, n0 = 1, p0, and ı0. Fig. 3 shows the code
f the RCW algorithm for nodes in rings Rk for k > 0. Each node in
ing k must only know initially the values ık, �k and pk. Observe
hat nk (number of nodes in ring k) can be locally calculated as
k = nk−1ık−1/�k. The correctness of this computation follows from
he uniform connectivity assumption (Eq. (1)).

.2. Analysis

The uniform connectivity property can be used to prove by
nduction that all nodes in the same ring k have the same prob-
bility vk to be reached. The absorption probability qk is defined as
k = pk/vk. Then, from Observation 1, the probability of selecting a
ode x of ring k is pk = vkqk. What is left to prove is that the value
k computed in Fig. 3 is in fact the visit probability of a node in ring
.

emma  6. The values vk computed in Fig. 3 are the correct visit
robabilities.

roof. Let us use induction. For k = 1 the visit probability of a node
 in ring R1 is 1−q0

n1
= 1−p0

n1
. On the other hand, when a message

CW MSG  reaches x, it carries v0 = 1, n0 = 1, p0, and ı0 (Line 2).
hen, v1 is computed as v1 = n0

v0−p0
n1

= 1−p0
n1

(Line 4). For a general
 > 1, assume the value vk−1 is the correct visit probability of a node
n ring k − 1. The visit probability of a node in ring k is vk−1nk−1(1 −
k−1)/nk, which replacing qk−1 = pk−1/vk−1 yields the expression
sed in Fig. 3 to compute vk (Line 4). �

The above lemma, together with the previous reasoning, proves
he following.

heorem 7. Every node at distance k of the source is selected with
robability pk.

. Sampling in a concentric rings network with uniform
onnectivity up to distance 2

In this section we generalize RCW for concentric rings with uni-
orm connectivity to allow that each node could have neighbors
t distances 1 and 2. Intuitively, this generalization will reduce on
verage the number of steps taken in each random walk. Then, we
ssume that two nodes in ring k have the same number of neigh-
ors in rings k − 2, k − 1, k + 1, and k + 2. Also, as before we assume

hat each node has at least one neighbor in the rings at distance 1.

In this case a node in ring k that receives the RCW and is not
elected has to decide whether to send the walk to a neighbor at
istance 1 or at distance 2 (among the neighbors at each distance
Fig. 4. RCW algorithm for concentric rings with uniform connectivity Up to Distance
2  (code for node x ∈ Rk , k > 0).

it uses uniform probability). To decide on this, we use a parameter
sk ∈ (0, 1] that is the probability of choosing a neighbor at distance
1 and (1 − sk) is the probability of choosing a neighbor at distance
2. The set of values sk has to be large enough so that the desired
probability distribution can be achieved (in particular, it must guar-
antee that the visit probability vk is no smaller than the selection
probability pk).

6.1. Analysis

As in Section 5, the absorption probability is set to qk = pk/vk.
The expression to compute vk now depends on parameters that
can come from the previous two rings. When the RCW is sent to a
node at ring k, must contain the values this node needs to compute
vk, namely nk−1, vk−1, pk−1, sk−1, nk−2, vk−2, pk−2, and sk−2. If the
message is sent to a node at distance 2 (Line 19), the sender (at ring
k − 2) must compute those values that it does not know (like vk−1)
before sending them.

Lemma  8. The values vk computed in Fig. 4 are the correct visit
probabilities.

Proof. The proof using induction is very similar to the proof of
Lemma  6. For k = 1 the visit probability of a node x in ring R1 is
1−q0

n1
= 1−p0

n1
. On the other hand, when a message RCW MSG  reaches

x, it carries n0 = 1, v0 = 1, p0, s0 = 1, n−1 = 0, v−1 = 0, p−1 = 0, and
s−1 = 0. Then, v1 is computed as v1 = n0

v0−p0
n1

s0 + n−1
v−1−p−1

n1
(1 −

sk−1) = 1−p0
n1

(Line 6). For a general k > 1, assume the values vk−1

and vk−2 are the correct visit probabilities of a node in ring k − 1
and k − 2 respectively. The visit probability of a node in ring k is
(vk−1nk−1(1 − qk−1)sk−1 + vk−2nk−2(1 − qk−2)(1 − sk−2))/nk, replac-
ing qk−1 = pk−1/vk−1 and qk−2 = pk−2/vk−2 yields the expression
used in Fig. 4 to compute vk (Line 6). �

7. Concentric rings networks without uniform connectivity

In general, concentric rings networks do not guarantee uniform
connectivity. For instance, two  nodes in a ring k may  have different

number of neighbors in rings k − 1 or k + 1. (Although it is expected
that the nodes’ degrees follow roughly a normal probability distri-
bution if randomly deployed in the rings.) As a consequence, the
RCW algorithm for uniform connectivity can not be used directly,
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In this section, we present the simulation results of the RCW
algorithm when sampling is done on the previously described
Fig. 5. Assignment Attachment Points (AAP) function.

ince it would show a biased behavior. We  propose now an algo-
ithm that creates an overlay uniform connectivity on top of the
xisting connectivity between rings.

.1. The Assignment Attachment Points (AAP) algorithm

To eliminate the errors observed when there is no uniform con-
ectivity, we propose a simple distributed algorithm to transform
he concentric rings network without uniform connectivity into an
verlay network with uniform connectivity.

To preserve the property that the visit probability is the same
or all the nodes in a ring, nodes will use different probabilities for
ifferent neighbors. Instead of explicitly computing the probability
or each neighbor, we will use the following process. Consider rings

 and k + 1. Let r = LCM(nk, nk+1), where LCM is the least common mul-
iple function. We assign r

nk
attachment points to each node in ring

, and r
nk+1

attachment points to each node in ring k + 1. Now, the
roblem is to connect each attachment point in ring k to a different
ttachment point in ring k + 1 (not necessarily in different nodes).
f this can be done, we can use the algorithm of Fig. 3, but when

 RCW is sent to the next ring, an attachment point (instead of a
eighbor) is chosen uniformly. Since the number of attachments
oints is the same in all nodes of ring k and in all nodes of ring k + 1,
he impact in the visit probability is that it is again the same for all
odes of a ring.

The connection between attachment points can be done with
he simple algorithm presented in Fig. 5, in which a node x in ring

 contacts its neighbors to request available attachment points. If a
eighbor that is contacted has some free attachment point, it replies
ith a response message RESPONSE MSG  with value OK,  accept-

ng the connection. Otherwise it replies to x notifying that all its
ttachment points have been connected. The node x continues try-
ng until its r

nk
attachment points have been connected or none of

ts neighbors has available attachment points. If this latter situation
rises, then the process failed. The algorithm finishes in O(max

k
{nk})

ommunication rounds. (Note that r ≤ nk · nk+1 and that, initially, C
s Nk+1(x) and hence |C| = nk+1.) Combining these results with the
nalysis of Section 5, we can conclude with the following theorem.

heorem 9. Using attachment points instead of links and the dis-
ributed RCW-based algorithm of Fig. 3, it is possible to sample

 concentric rings network without uniform connectivity with any
esired distance-based probability distribution pk, provided that the

lgorithm of Fig. 5 completes (is successful) in all the nodes.

In general, the algorithm of Fig. 5 may  not be successful. How-
ver, it can be shown that it is always successful if there is uniform
Fig. 6. Node deployment and connectivity used in the simulations.

connectivity. In fact, the success of AAP does not depend on the
random decisions made in the algorithm, but on structural proper-
ties of the connectivity between all consecutive rings. Let us abuse
the notation and use Nk+1(W) to denote the neighbors from Rk+1 of
the nodes in set W ⊆ Rk. Recall that, when connecting rings k and
k + 1, each node in ring k is assigned r

nk
attachment points, while

each node in ring k + 1 is assigned r
nk+1

attachment points. Then,
we characterize the cases in which AAP is going to be successful as
described in the following theorem, which is a direct application of
Hall’s Theorem [12].

Theorem 10. Given a concentric rings network, the AAP algorithm is
successful and finishes in O(max

k
{nk}) rounds iff ∀k ∈ [1,  R − 1],  ∀W ⊆

Rk, |W |
nk

≤ |Nk+1(W))|
nk+1

.

In order to evaluate empirically the success of the algorithm,
we use a geometric deployment. A node x in ring k is assigned a
position in the ring. This position can be given by an angle ˛. Then,
each network studied will have associated a connectivity angle ˇ,
the same for all nodes. This means that x will be connected to all
the nodes in rings k − 1 and k + 1 whose position (angle) is in the
interval [  ̨ − ˇ/2,  ̨ + ˇ/2] (see Fig. 6). Observe that the bigger the
angle  ̌ is, the more neighbors x has in rings k − 1 and k + 1.

It is shown in Table 1 the success rate of the algorithm for dif-
ferent connectivity angles. It can be observed that the success rate
is high as long as the connectivity angles are not very small (at least
60◦). (For an angle of 60◦ the expected number of neighbors in the
next ring for each node is less than 17.) For small angles, like 15◦

and 30◦, the AAP algorithm is never successful.
For the cases in which AAP fails, the algorithm for connected

network presented in Section 3 can be used. Observe that, the
complexity of building the spanning tree rooted at the source s
is S ∈ �(D),4 where D is the largest distance from s to any node. On
the other hand, independently of whether it succeeds, the AAP algo-
rithm finishes in O(max

k
{nk}) rounds. Therefore, if S ∈ ω(max

k
{nk}),

then it is worth trying AAP before using the approach of Section 3,
due to the potential savings.

8. RCW simulation results
topologies (connected networks, grid and concentric rings). We

4 For instance, the algorithm of Bui et al. [4] is linear in the number of rounds.



putational Science 11 (2015) 34–45 41

i
t
s
r
c
b

8

M
i
c
o
T
d
[
(
t
1

8
a

c
B
(
g
w

s
s

E

w
n
s
d

E

a
n
o

a
r
p
s
w
O
r

8

d

A. Sevilla et al. / Journal of Com

mplement two sampling distributions: uniform (UNI) and propor-
ional to the inverse of the distance (PID). The objective of these
imulations is to measure, in each topology, the RCW error with
espect to a uniform and a PID random sampling simulator. Also, we
ompare the RCW algorithm against some well known Markovian
ased algorithms.

.1. Connected networks

In this experiment, we compare the RCW algorithm with the
arkovian approach described in [17]. Firstly, we use the normal-

zed root mean square error (NRMSE), described in that paper, to
ompare the algorithms. Secondly, we use the relative error to
btain a more accurate evaluation of the RCW algorithm error.
o perform these experiments we choose a real-world network
ataset used in [17]. This network is the undirected graph AS-733
18], with 6474 nodes and 13233 edges. Each node represents an AS
Autonomous System) and the edges show the node peering rela-
ionships. In this graph, the maximum degree and the diameter are
460 and 9, respectively.

.1.1. Comparing the RCW algorithm with the MH and MH-DA
lgorithms

In this subsection, we compare RCW algorithm with the classi-
al MH algorithm [21] and the MH-DA algorithm described in [17].
efore using the RCW algorithm, we do the required preprocessing
see Fig. 1) for building a spanning tree and running a weight aggre-
ation process on this graph. For the graph of the dataset AS-733,
e obtain a spanning tree of diameter 11.

We  use the NRMSE in order to compare the accuracy of the RCW
ampling with the MH  and MH-DA algorithms. The NRMSE for the
ource node i is defined as

i(d, r) =
√

(E(d, r) − (nd/n)2

nd/
∑

jnj
(3)

here d is the degree of node i, r is the number of samples, nd is the
umber of nodes with degree d, and E(d, r) is the expected value of r
amples with degree equal to d. The average NRMSE for all possible
egrees is defined as

i(r) =
∑

d

Ei(d, r)
nd

n
(4)

To obtain the NRMSE for every graph node, we use the RCW, MH
nd MH-DA algorithms to collect samples starting from each graph
ode. In Fig. 7, we show the NRMSE average for different numbers
f samples per node, ranging from 1000 to 10, 000.

These results show that the RCW algorithm outperforms, in
ccuracy, the MH  and MH-DA algorithms. The RCW algorithm
eaches a mean NRMSE error below 1.0 requiring only 2000 sam-
les, while the MH and MH-DA algorithms need at least 6000
amples to obtain similar results. Moreover, RCW does not need
arm-up to offer samples with a high accuracy from the first time.
n average, RCW only needs 4.67 hops per sample to obtain accu-

ate results in our dataset.
.1.2. Evaluating the RCW algorithm using the relative error
We compare now the RCW algorithm with a uniform probability

istribution simulator5 using the average relative error. We  define

5 Pseudorandom number generator Mersenne Twister.
Fig. 7. The NRMSE average over all possible degrees for RCW, MH and MHDA algo-
rithms sampling on the AS-733 graph.

the relative error (RE) ei for a node i in a collection C of s samples as

ei = |fRCWi − fi|
fi

,

where fRCWi is the number of instances of i in collection C obtained
by the RCW algorithm, and fi = pi · s is the expected number of
instances of i with the uniform probability distribution (pi). We  use
the RE, instead of the NRMSE, because the NMRSE is aggregated by
the node degree, and hence it does not give information of the error
distribution.

In this experiment we chose three source nodes uniformly at
random. Then, we sampled collections of different sizes, ranging
from 103 to 107 samples per collection. Fig. 8 shows the distribution
of RE obtained for different sample sizes. Observe that for a collec-
tion of 106 samples (roughly 150 samples per node) the average
relative error is below 5%, and that this error is similar for the three
source nodes (selected at random) and similar to the one obtained
by uniform sampling of the nodes.

8.2. Grids

We evaluate now the RCW algorithm using a grid of 101 × 101
nodes, with the source placed at the center, so we have a biggest
diamond of 5101 nodes (recall that the RCW algorithm works in the
biggest diamond contained in the grid). In this experiment, we use
the relative error (ei) to evaluate the goodness of the RCW algo-
rithm. In Fig. 9 we show the relative error for uniform sampling
using several sample sizes. The mean relative error is below 3% for
a 105 sample size (the frequency of each node is 20 on average).
The average relative error in this topology is very close to the error
of the previous connected topology. Again, the error distribution is
very similar to the one obtained using a uniform sampling of the
nodes.
8.3. Concentric rings

In this section we compare the RCW algorithm with a UNI and
PID (pseudo)random generators. To compare them we  use the
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Fig. 8. RCW relative error from the three different starting sources on the AS-733
graph. Three different starting nodes are used, namely 701, 4581, and 12236. The
error distribution for a simulated uniform random sampling of the nodes is also
shown, labelled UNI Sim.

r
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r
c
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Fig. 9. RCW relative error from a source at the center of a 101 × 101 grid. The error
elative error (ei). In these experiments, we test two topologies,
ne with uniform connectivity and another one without uniform
onnectivity. For the non-uniform topology, we use the AAP algo-

ithm to transform the concentric rings network without uniform
onnectivity into an overlay network with uniform connectivity.
n order to contrast the AAP algorithm behavior we  use different
ode density configurations.

Fig. 10. Relative error using different angles in a 100 × 100 
distribution for a simulated uniform random sampling of the nodes is also shown,
labelled UNI Sim.

8.3.1. Concentric rings with uniform connectivity
We use a concentric rings topology of 100 rings with 100 nodes

per ring, where the nodes are placed uniformly on each ring. This
deployment guarantees the uniform connectivity property (1). We
have collected different samples sets (from 104 to 107 samples).
In Fig. 10 we show the relative error distribution for UNI and PID

◦ ◦
sampling using two angles (15 and 30 ) to find the neighbor nodes
in the network. Observe that with a sample size of 106 (100 samples
per node on average), the mean relative error is below 8% and the

concentric rings topology with uniform connectivity.
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Fig. 11. Relative error using different angles in a 100 × 100 concentric

elative error distributions of the UNI and PID generators are very
imilar to the relative error of the RCW sampling.

.3.2. Concentric Rings without uniform connectivity
We now focus on evaluating the relative error of the RCW algo-

ithm when it is used on a more realistic topology: a concentric
ings network without uniform connectivity. In this experiment we

ave used three different configurations: 100 × 100 (100 rings of
00 nodes), 100 × 1000 and 10 × 1000. In all of them we  have placed
he ring nodes uniformly at random on each ring, so that the uniform
onnectivity is not guaranteed.

Fig. A.12. Relative error using different angles in a 10 × 1000 concentric ring
 topology without uniform connectivity and using the AAP algorithm.

Before starting the sampling, we  have executed the AAP algo-
rithm with one attachment point per node to guarantee the uniform
connectivity and hence, obtaining unbiased results. In Fig. 11
(100 rings and 100 nodes per ring), A.12 (10 × 1000) and A.13
(100 × 1000) we  show the results of the RCW algorithm doing uni-
form sampling. In these configurations, the AAP algorithm uses
two angles 150◦ and 180◦ to find neighbors in the previous and

next rings for the topology of 100 × 100 nodes. These angles may
be seem large, but the node density at the rings is low, and using
smaller angles it is very likely that the AAP algorithm fails. For the
topologies with a higher node density (10 × 1000 and 100 × 1000),

s topology without uniform connectivity and using the AAP algorithm.
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Fig. A.13. Relative error using different angles in a 100 × 1000 concentr

e have used smaller angles (60◦ and 90◦). In any case, the results in
he three topologies show a very similar relative error distributions
nd a similar behavior to the sampling performed by the uniform
imulator (UNI). In Fig. 11 (100 rings and 100 nodes per ring), A.12
10 × 1000) and A.13 (100 × 1000) we show the behavior of the
CW algorithm using the UNI and PID sampling. As corollary, the
CW error behavior is roughly the same independently of the dis-
ribution chosen to sampling, and there is no difference between
he relative error of the RCW with AAP and the sampling performed
y the UNI or PID simulators.

. Conclusions

In this paper we propose distributed algorithms for node samp-
ing in networks. All the proposed algorithms are based on a new
lass of random walks called Random Centrifugal Walks. These
lgorithms guarantee that the sampling completes after a num-
er of hops that is upper bounded by the diameter of the network,
hile samples with the exact probability distributions are obtained.

uture work will explore sampling in dynamic networks using
andom Centrifugal Walks. Additionally, we will investigate more
eneral algorithms that would also deal with (or employ) distribu-
ions that do not only depend on the distance from the source.
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ppendix A. Additional figures

In this appendix we include additional figures presenting results
btained in the RCW simulations.
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s topology without uniform connectivity and using the AAP algorithm.

References

[1] Asad Awan, Ronaldo A. Ferreira, Suresh Jagannathan, Ananth Grama,
Distributed uniform sampling in unstructured peer-to-peer networks, in:
HICSS. IEEE Computer Society, 2006.
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