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Abstract In this paper, we explore the problem of achiev-
ing efficient packet transmission over unreliable links with
worst-case occurrence of errors. In such a setup, even an
omniscient offline scheduling strategy cannot achieve stabil-
ity of the packet queue, nor is it able to use up all the available
bandwidth. Hence, an important first step is to identify an
appropriate metric to measure the efficiency of scheduling
strategies in such a setting. To this end, we propose an asymp-
totic throughput metric which corresponds to the long-term
competitive ratio of the algorithmwith respect to the optimal.
We then explore the impact of the error detection mech-
anism and feedback delay on our measure. We compare
instantaneous with deferred error feedback, which requires
a faulty packet to be fully received in order to detect the
error. We propose algorithms for worst-case adversarial and
stochastic packet arrival models, and formally analyze their
performance. The asymptotic throughput achieved by these
algorithms is shown to be close to optimal by deriving lower
bounds on the metric and almost matching upper bounds for
any algorithm in the considered settings. Our collection of
results demonstrate the potential of using instantaneous feed-
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back to improve the performance of communication systems
in adverse environments.
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1 Introduction

1.1 Motivation

Packet scheduling (Meiners and Torng 2007) is one of
the fundamental problems in computer networks. As pack-
ets arrive, the sender (or scheduler) needs to continuously
make scheduling decisions, without knowledge of future
packet arrivals, and typically the objective is to maximize
the throughput of the link or to achieve stability. Therefore,
this problem is many times treated as an online scheduling
problem (Awerbuch et al. 1992; Pruhs et al. 2004) and com-
petitive analysis (Ajtai et al. 1994; Sleator and Tarjan 1985)
is used to evaluate the performance of proposed solutions:
the worst-case performance of an online algorithm is com-
pared with the performance of an offline optimal algorithm
that has a priori knowledge of the problem’s input.

In this work, we focus on online packet scheduling over
unreliable links, where packets transmitted over the link
might be corrupted by bit errors. Such errors may, for
example, be caused by an increased noise level or transient
interference on the link, that in theworst case could be caused
by a malicious entity or an attacker. In the case of an error,
the affected packets must be retransmitted. To investigate the
impact of such errors on the scheduling problem under study
and provide provable guarantees, considering the worst-case
occurrence of errors; errors are caused by an omniscient and
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adaptive adversary (Richa et al. 2012). The adversary has
full knowledge of the protocol and its history, and it uses
this knowledge to decide whether it will cause errors on the
packets transmitted in the link at a certain time or not. Within
this general framework, the packet arrival is continuous and
can either be controlled by the adversary or be stochastic.

Specifically, we consider a single link between two sta-
tions, sender and receiver, with the sender scheduling the
packets that arrive dynamically to be transmitted over the
link. Packets may have lengths � ∈ [�min, �max], where �min

and �max are the smallest and largest lengths, respectively.
We denote by γ = �max/�min, γ = �γ � and γ̂ = �γ � − 1.
What is more, the arrival times are either controlled by the
adversary, or are stochastic, following a Poisson distribu-
tion with parameter λ > 0. In this case, the packets have
probability p > 0 of being of length �min and probability
q > 0 of being of length �max, where p + q = 1. However,
the link is unreliable, that is, transmitted packets might be
corrupted by bit errors. We consider an adversary control-
ling them, characterizing the worst-case scenarios, and look
at instantaneous and deferred feedback mechanisms for the
notification of the sender. For the performance evaluation,
we pursue long-term competitive analysis. We denote by
TAlg = inf A∈A,E∈E limt→∞ TAlg(A, E, t) the asymptotic
throughput of online algorithm Alg, where A is the set of
packet arrival patterns and E the set of link error patterns.
TAlg(A, E, t) is the throughput ratio of Alg under arrival and
error patterns A and E up to time t .

1.2 Contributions

Packet scheduling performance is often evaluated using
throughput, measured in absolute terms (e.g., in bits per sec-
ond) or normalized with respect to the bandwidth (maximum
transmission capacity) of the link. This throughput metric
makes sense for a link without errors or with random errors,
where the full capacity of the link can be achieved under cer-
tain conditions. However, if adversarial bit errors can occur
during the transmission of packets, the full capacity is usu-
ally not achievable by any protocol, unless restrictions are
imposed on the adversary (Andrews and Zhang 2005; Richa
et al. 2012).Moreover, since a bit error renders awhole packet
unusable (unless costly techniques like PPR (Jamieson and
Balakrishnan 2007) are used), a throughput equal to the
capacity minus the bits with errors is not achievable either.
As a consequence, in a link with adversarial bit errors, a
fair comparison should compare the throughput of a spe-
cific algorithm to the maximum achievable amount of traffic
that any protocol could send across the link. This introduces
the challenge of identifying an appropriate metric to mea-
sure the throughput of a protocol over a link with adversarial
errors.

– Asymptotic throughput: Our first contribution is the pro-
posal of an asymptotic throughput metric for packet
scheduling algorithms under unreliable links (Sect. 2).
This metric is a variation of the competitive ratio typ-
ically considered in online scheduling and bin packing
problems (see the works of Van Stee (2002) and Borodin
and El-Yaniv (1998)). Instead of considering the ratio of
the performance of a given algorithmover that of the opti-
mal offline algorithm, we consider the limit of this ratio
as time goes to infinity. This corresponds to the long-
term competitive ratio of the algorithm with respect to
the optimal.

– Problem outline: We consider a sender that transmits
packets to a receiver over an unreliable link, where the
errors are controlled by an adversary. Regarding packet
arrivals (at the sender), we consider two models: (a) the
arrival times and their sizes are also controlled by an
adversary, and (b) the arrival times and their sizes follow
a stochastic distribution.We introduce this second model
in order to decrease the power and control of the adver-
sary over the system and compare with (a). In particular,
we consider a Poisson distribution of arrivals (for details
see Sect. 2), which is a classical distribution characteriz-
ing average cases. Note that it is an optimistic distribution
for the realistic characterization of network traffic Bec-
chi (2008). Nonetheless, we believe it of importance to
analyze it before looking into other distributions, and
as will be shown later, the analysis is not trivial. Note
that the arrival model (a) gives results for the worst-case,
while arrival model (b) gives results for the average-case.
The general offline version of our scheduling problem,
in which the scheduling algorithm knows a priori when
errors will occur, is NP-hard (see Sect. 3). This fur-
ther motivates the need for devising simple and efficient
online algorithms for the problem we consider.

– Feedback mechanisms: Then, moving to the online prob-
lem requires detecting the packets received with errors,
in order to retransmit them. The usual mechanism (Lin
and Costello 2004), which we call deferred feedback,
detects and notifies the sender that a packet has suffered
an error after the whole packet has been received by the
receiver. We show that, even when the packet arrivals are
stochastic and packets have the same length, no online
scheduling algorithmwith deferred feedback can be com-
petitivewith respect to the offline one. Hence, we turn our
attention on a second mechanism, which we call instan-
taneous feedback. It detects and notifies the sender of an
error the moment this error occurs. This mechanism can
be thought of as an abstraction of the emerging continu-
ous error detection (CED) framework (Raghavan et al.
2001) that uses arithmetic coding to provide continu-
ous error detection. The difference between deferred and
instantaneous feedback is drastic, since for the instanta-
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Fig. 1 Upper bound on the asymptotic throughput under adversarial
packet arrivals and instantaneous feedback. a For any algorithm Alg,
TAlg ≤ γ /(γ +γ ). b For algorithm SL, TSL ≤ 1/(γ +1). Observe that
SL has a significantly lower bound as γ increases

neous feedback mechanism, and for packets of the same
length, it is easy to obtain optimal asymptotic throughput
of 1, even in the case of adversarial arrivals. However, the
problem becomes substantially more challenging in the
case of non-uniform packet lengths. Hence, we analyze
the problem for the case of packets with two different
lengths, �min and �max, where �min < �max.

– Bounds for adversarial arrivals: We show (Sect. 4), that
any online algorithm with instantaneous feedback can
achieve at most almost half the asymptotic throughput
with respect to the offline one. (See Fig. 1 for the graphi-
cal representation of the upper bound.)We also show that
two basic scheduling policies, giving priority either to
short (SL—shortest length) or long (LL—longest length)
packets, are not efficient under adversarial errors. There-
fore, we devise a new algorithm, called SL-Preamble,
and show that it achieves the optimal online asymptotic
throughput. Our algorithm, transmits a “sufficiently”
large number of short packets while making sure that
long packets are transmitted from time to time.

– Bounds for stochastic arrivals: In the case of stochastic
packet arrivals (Sect. 5), as one might expect, we obtain
better asymptotic throughput in some cases. The results
are summarized in Table 1 and a graphical representation
can be seen better in Fig. 2. We propose and analyze an
algorithm, called CSL-Preamble, that achieves optimal
asymptotic throughput. It schedules packets according to
SL-Preamble, giving preference to short packets depend-
ing on the parameters of the stochastic distribution of
packet arrivals.1 We show that the performance of algo-
rithm CSL-Preamble is optimal for a wide range of
parameters of stochastic distributions of packets arrivals,

1 If the distribution is not known, and then obviously one needs to use
the algorithm developed for the case of adversarial arrivals that needs
no knowledge a priori.

by proving the matching upper bound2 of the asymptotic
throughput for any algorithm in this setting.

– A note on randomization: All the proposed algorithms
are deterministic. Using Yao’s principle, Yao (1977), it
follows that considering randomized algorithms does not
improve the results; the upper bounds on the asymptotic
throughput already discussed hold also in the randomized
case, for oblivious adversaries (see Sect. 6).

To the best of our knowledge, this is the first work
that investigates in depth the impact of adversarial worst-
case link errors on the throughput of the packet scheduling
problem. Collectively, our results (see Table 1) show that
instantaneous feedback can achieve a significant asymptotic
throughput under worst-case adversarial errors (almost half
the asymptotic throughput that the offline optimal algorithm
can achieve). Furthermore, we observe that in some cases,
stochastic arrivals allow for better performance.

1.3 Related work

A vast amount of work exists for online scheduling. Here we
focus only on the work that is most related to ours, but for
more information we advice the reader to consult the works
of Pinedo (2012) and Pruhs et al. (2004). Thework of Kessel-
heim (2012) considers the packet scheduling problem in
wireless networks. Like our work, it looks at both stochastic
and adversarial arrivals. Unlike our work though, it considers
only reliable links. Its main objective is to achieve max-
imal throughput guaranteeing stability, meaning bounded
time from injection to delivery. The work of Andrews and
Zhang (2005) considers online packet scheduling over awire-
less channel, where both the channel conditions and the data
arrivals are governed by an adversary. Its main objective is to
design scheduling algorithms for the base-station to achieve
stability in terms of the size of queues of each mobile user.
Ourworkdoes not focus on stability, asweassumeerrors con-
trolled by an unbounded adversary that can always prevent
it. The work of Richa et al. (2012) considers the problem of
devising local access control protocols for wireless networks
with a single channel, that are provably robust against adap-
tive adversarial jamming. At certain time steps, the adversary
can jam the communication in the channel in such a way that
the wireless nodes do not receive messages (unlike our work,
where the receiver might receive a message, but it might con-
tain bit errors). Although the model and the objectives of this
line of work is different from ours, it shares the same concept
of studying the impact of adversarial behavior on network
communication. Another related work is the one of Anan-
tharamu et al. (2011), in which the authors explore the effect

2 Analyzing algorithms yields lower bounds on the asymptotic through-
put, while analyzing adversarial strategies yields upper bounds.
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Table 1 Summary of results presented

Arrivals Feedback Upper Bound Lower Bound
Deferred 0 0

Adversarial Instantaneous TAlg ≤ γ /(γ + γ ) TSL−Pr ≥ γ /(γ + γ )

TL L = 0, TSL ≤ 1/(γ + 1)

Stochastic Instantaneous TAlg ≤ γ /γ TC SL−Pr ≥ γ /(γ + γ ), if λp�min ≤ γ /(2γ )

TAlg ≤ max {λp�min, γ /(γ + γ )}, if p < q TC SL−Pr ≥ min {λp�min, γ /γ }, otherwise
TL L = 0, TSL ≤ 1/(γ + 1)

The results for deferred feedback are for one packet length, while the results for instantaneous feedback are for 2 packet lengths �min and �max. Note
that γ = �max/�min, γ = �γ �, λp is the arrival rate of �min packets, and p and q = 1− p are the proportions of �min and �max packets, respectively

of adversarial jamming on broadcasting in multiple-access
channels under dynamic packet arrivals. They constrain both
the arrival and jamming processes and give upper bounds
on worst-case latency of widely used protocols. Last but not
least, the work of Li (2011), tries to maximize the weighted
throughput over a fading wireless channel considering pack-
ets with deadlines. They look at both the offline and online
version of the problem and consider preemptive and non-
preemptive scheduling. One difference with our work is that
they consider uniform packet lengths with different weights,
and their transmission time depends on the channel’s quality
(which changes with time). Moreover, instead of considering
the transmission time for the metric, as we do, they consider
the packets’ weights.

We can also relate our work with the online version of
the bin packing problem (Van Stee 2002), where the objects
to be assigned to bins are the packets arriving to the send-
ing station and the bins are the time intervals between two
consecutive link failures. Some of the wide research that has
takenplace over the years around this problem,weconsider to
be related to ours. For example, Epstein and van Stee (2007)
as well as Van Stee (2002) considered online bin packing
with resource augmentation in the size of the bins, and used
the so called asymptotic performance ratio for the evaluation
of the competitiveness of the algorithm they propose. This
metric corresponds to our asymptotic throughput, since they
both follow the idea of long-term competitiveness. Observe
that the essential difference of the online bin packing problem
with the one that we are considering, is that in our system the
bins and their sizes (intervals between failures) are unknown.

Another problem related to our work is the one of buffer
management, see for example the survey of Goldwasser
(2010), and the works of Li and Zhang (2009), Kogan et al.
(2012) and Kogan et al. (2013). The theoretical community
began applying the competitive analysis in this domain of
work in 2000, with theworks of Aiello et al. (2000),Mansour
et al. (2000) and Kesselman et al. (2004). Focusing on the
work of Li and Zhang (2009) in particular, it concentrates on
a variant of the FIFO buffering model. Packets arrive dynam-
ically and they are either sent or dropped due to the limited

capacity of the buffer, say B. This can be seen as the cor-
responding jamming in our mode, but with a constant rate
B.

Finally, the work of Jurdzinski et al. (2014) was motivated
by the conference version of the present paper, and proposed
an algorithm for scheduling packets of an arbitrary number
of lengths, say k.

2 Model

2.1 Network setting

We consider a sending station transmitting packets over a
link. Packets arrive at the sending station continuously and
may have different lengths; each of them associated with
its arrival time (based on the station’s local clock) and its
length.We denote �min and �max to be the smallest and largest
lengths, respectively, that a packet may have. We also use the
notation γ = �max/�min, γ = �γ � and γ̂ = �γ � − 1. We
assume that all packets are transmitted at the same bit rate
through the link, hence the transmission time is proportional
to the packet’s length. However, the link is unreliable, that
is, transmitted packets might be corrupted by bit errors.

2.2 Arrival models

– Adversarial:Thepackets’ arrival time and length are gov-
erned by an adversary. We define an adversarial arrival
pattern as a collection of packet arrivals caused by the
adversary.

– Stochastic: We consider a probabilistic distribution Da ,
under which packets arrive at the sending station and a
probabilistic distribution Ds , for the length of the pack-
ets. In particular, we assume packets arriving according
to a Poisson process with parameter λ > 0. When con-
sidering two packet lengths, �min and �max, each packet
that arrives is assigned one of the two lengths indepen-
dently, with probabilities p > 0 and q > 0, respectively,
where p + q = 1.
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Fig. 2 In the left column, we give 3D representations of the upper
bounds on the asymptotic throughput under stochastic packet arrivals
for a range of �min and �max values. In the right column, we give 2D
representations of the same graph, with additional information on the

lower bound on the asymptotic throughput, under arbitrarily fixed �max.
In both columns, we assume �min-packet arrival probabilities as follows:
a, b p = 0.01, c, d p = 0.1 and e, f p = 0.3
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2.3 Packet bit errors

We consider an adversary that controls the bit errors of the
packets transmitted over the link. An adversarial error pattern
is defined as a collection of error events on the link caused
by the adversary. More precisely, an error event at time t
specifies that an instantaneous error occurs on the link at time
t , so the packet that happens to be on the link at that time is
corrupted with bit errors. A corrupted packet transmission is
considered to be unsuccessful, therefore the packet needs to
be retransmitted in full. Even though we focus mainly on the
instantaneous feedbackmechanism for the notification of the
sender about the error (the sending station is notified about
the bit error as soon as it happens), in the case of deferred
feedback the sending station is only notified about the error
when the packet is fully received by the receiving end of the
link.

2.4 The power of the adversary

Adversarialmodels are typically used to argue about the algo-
rithm’s behavior in worst-case scenarios. In this work, we
assume an adaptive adversary that knows the algorithm and
the history of the execution up to the current point in time.
In the case of stochastic arrivals, this includes all stochastic
packet arrivals up to this point, and the length of the packets
that have arrived. However it only knows the distribution but
neither the exact timing nor the length of the packets arriving
beyond the current time.

Note that, in themodel of adversarial arrivals the adversary
has full knowledge of the computation, as it controls both
packet arrivals and errors, and can simulate the behavior of
the algorithm in the future (there are no random bits involved
in the computation). This is not the case in the model with
stochastic arrivals, where the adversary does not control the
timing of future packet arrivals, but knows only about the
packet arrival and length distributions.

2.5 Efficiency metric

2.5.1 Asymptotic throughput

Due to dynamic packet arrivals and adversarial errors, the
real link capacity may vary throughout the execution. There-
fore, we view the problem of packet scheduling in this setting
as an online problem and we pursue long-term competitive
analysis. Specifically, let A be an arrival pattern and E an
error pattern. For a given deterministic algorithm Alg, let
LAlg(A, E, t) be the total length of all the successfully trans-
mitted (i.e., non-corrupted) packets by time t under patterns
A and E . LetOPTbe the offline optimal algorithm that knows
the exact arrival and error patterns before the start of the exe-
cution.We assume that OPT devises an optimal schedule that

maximizes at each time t the successfully transferred pack-
ets LOPT(A, E, t). Observe that, in the case of stochastic
arrivals, the worst-case adversarial error pattern may depend
on stochastic injections. Therefore, we view E as a function
of an arrival pattern A and time t .

In particular, for an arrival pattern A we consider a func-
tion E = E(A, t) that defines errors up to time t based on the
behavior of a given algorithm Alg under the arrival pattern
A up to time t and the values of function E(A, t ′) for t ′ < t .

Let A denote a considered arrival model, i.e., a set of
arrival patterns in case of adversarial, or a distribution of
packet injection patterns in case of stochastic, and let E
denote the corresponding adversarial error model, i.e., a set
of error patterns derived by the adversary, or a set of functions
defining the error event times in response to the arrivals that
already took place in case of stochastic arrivals. We require
that any pair of arrival and error patterns A ∈ A and E ∈ E
must allownon-trivial communication, that is, the total length
of transmitted packets is unbounded with t going to infinity;
limt→∞ L X (A, E, t) = ∞, for any algorithm X .

For arrival pattern A, adversarial error pattern E and time
t , we define the asymptotic throughput TAlg(A, E, t) of a
deterministic algorithm Alg by time t as:

TAlg(A, E, t) = LAlg(A, E, t)

LOPT(A, E, t)
.

For completeness, TAlg(A, E, t) equals 1 if LAlg

(A, E, t) = LOPT(A, E, t) = 0. Then, we define the asymp-
totic throughput of algorithm Alg in the adversarial arrival
model as:

TAlg = lim
t→∞ inf

A∈A,E∈E
TAlg(A, E, t),

while in the stochastic arrival model it needs to take into
account the random distribution of arrival patterns inA, and
is defined as follows:

TAlg = lim
t→∞ inf

E∈E
EA∈A[TAlg(A, E, t)].

Note that the asymptotic throughput is different from
the classical competitiveness ratio. In the classical compet-
itive analysis, an algorithm Alg would be x-competitive if
LAlg(A, E, t) ≤ x × LOPT(A, E, t) + Δ, for any t , OPT
and patterns A and E , from which Δ is independent. The
difference with the efficiency measure we described above,
basically lies in the additive term Δ of the competitiveness
formula which in our case may depend on time, and the fact
that the final ratio is taken as the limit of the instantaneous
ratio as time goes to infinity.

To prove lower bounds on the asymptotic throughput, we
compare the performance of a given algorithm with that of
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OPT. When deriving upper bounds, we compare the perfor-
mance of some carefully chosen offline algorithm OFF with
the performance of any online algorithm Alg. As we demon-
strate later, this approach leads to accurate upper bound
results.

Finally, we consider work conserving online scheduling
algorithms, in the sense that, as long as there are pending
packets, the sender does not cease to schedule them. Note
that it does not make any difference whether one assumes
that offline algorithms are work conserving or not, since
their throughput is the same in both cases (a work conserv-
ing offline algorithm always transmits, but stops the ongoing
transmission as soon as an error occurs, and then continues
with the next packet). Hence for simplicity we do not assume
offline algorithms to be work conserving.

3 NP-hardness

We now prove the NP-hardness of the offline version of the
scheduling problem we are studying in this work, defined for
a single link as follows:

INSTANCE (throughput problem): Set X of packets, for
each packet x ∈ X a length l(x) ∈ N

+, an arrival time
a(x) ∈ Z

0, a sequence of time instants 0 = T0 < T1 < T2 <

· · · < Tk, Ti ∈ N
0, so that the link suffers an instantaneous

error at each time Ti , i ∈ [1, k] (in other words, at each time
Ti , any packet transmitted over the link is corrupted).

QUESTION: is there a schedule of X so that error-free
packets of total length Tk are transmitted by time Tk over the
link?

Theorem 1 The throughput problem is NP-hard.

Proof We use the 3-Partition problem which is known to be
an NP-hard problem.

INSTANCE: Set A of 3m elements, a bound B ∈ N
+ and,

for each a ∈ A, a size s(a) ∈ N
+ such that B/4 < s(a) <

B/2 and
∑

a∈A s(a) = m B.
QUESTION: can A be partitioned into m disjoint sets

{A1, A2, . . . , Am} such that, for each 1 ≤ i ≤ m,
∑

a∈Ai
s(a) = B?

We reduce the 3-Partition problem to the Throughput
Problem, defined for a single link. The reduction is by set-
ting X = A, l() = s(), a() = 0, k = m, and Ti = i B for
i ∈ [1, k].

If the answer to 3-Partition is affirmative, then for the
Throughput Problem there is a way to schedule (and trans-
mit) the packets in X in subsets {X1, X2, . . . , Xm} =
{A1, A2, . . . , Am}, so that all the packets in Ai can be trans-
mitted over the link in the interval [Ti−1, Ti ]. Furthermore,
since

∑
a∈Ai

s(a) = ∑
x∈Xi

l(x) = B, and Ti − Ti−1 = B,
the total length of packets transmitted by time Tk is Tk .

The reverse argument is similar. If there is a way to sched-
ule packets so that the total packet length transmitted by time
Tk is Tk , in each interval between two error events on the link
there must be exactly B bytes of packets transmitted. Then,
the packets can be partitioned into subsets of total length B
each. This implies the partition of A. �


4 Adversarial arrivals

This section focuses on adversarial packet arrivals. We first
study the asymptotic throughput of any algorithm under
the deferred feedback mechanism, to show the necessity of
immediate feedback. Recall that with the deferred feedback
the sending station is notified about a corrupted packet only
after its full transmission.

Theorem 2 No packet scheduling algorithm Alg can achieve
an asymptotic throughput larger than 0 under adversarial
arrivals in the deferred feedback model, even with one packet
length.

Proof Consider the case at which packets arrive frequently
enough so that there are always some packets ready at the
sender station, when it is about to make a decision. The
algorithm will then greedily send a train of packets, while
the adversary injects bit errors at a distance of exactly �

so that each error hits a different packet. Hence, the Alg
cannot successfully complete any transmission (that is, it
cannot transmit non-corrupted packets). At the same time, an
offline algorithm OFF is able to send packets in each interval
of length � without errors, which results to an asymptotic
throughput equal to 0 as claimed. �


We therefore focus on immediate feedback, for the rest of
the section. Observe that it is relatively easy and efficient to
handle packets of only one length.

Proposition 1 Any work conserving online scheduling algo-
rithm with instantaneous feedback has optimal asymptotic
throughput of 1 when all packets have the same length.

Proof Consider an algorithm Alg. Since it is work conserv-
ing, as long as there are pending packets, it schedules them.
If an error is reported by the feedback mechanism, the algo-
rithm simply retransmits another (or the same) packet. Since
the notification is instantaneous, it is not difficult to see that
the a priori knowledge that the offline optimal algorithm has,
does not help in transmitting more non-corrupted packets
than Alg. �


4.1 Upper bound

Let Alg be any deterministic algorithm for the considered
packet scheduling problem. In order to prove upper bounds,
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Alg will be competing with an offline algorithm OFF. The
scenario is as follows. We consider an infinite supply of
packets of length �max and initially assume that there are
no packets of length �min. We define as a link error event, the
point in timewhen the adversary corrupts (causes an error to)
any packet that happens to be in the link at that specific time.
We divide the execution in phases, defined as the periods
between two consecutive link error events. We distinguish
two types of phases as described below and give a descrip-
tion for the behavior of the adversarial modelsA and E . The
adversary controls the arrivals of packets at the sending sta-
tion and error events of the link, as well as the actions of
algorithm OFF. The two types of phases are as follows:

1. A phase in which Alg starts by transmitting an �max

packet (the first phase of the execution belongs to this
class). Immediately after Alg starts transmitting the �max

packet, a set of γ̂ �min-packets arrive, that are sched-
uled and transmitted by OFF. After OFF completes, the
transmission of these packets, a link error occurs, so
Alg cannot complete the transmission of the �max packet
(more precisely, the packet undergoes a bit error, so it
needs to be retransmitted). Here we use the fact that
γ̂ < γ .

2. A phase in which Alg starts by transmitting an �min

packet. In this case, OFF transmits an �max packet. Imme-
diately after this transmission is completed, a link error
occurs. Observe that in this phase Alg has transmitted
successfully several �min packets (up to γ of them).

Let A and E be the specific adversarial arrival and error
patterns in an execution of Alg. Let us consider any time t (at
the end of a phase for simplicity) in the execution. Let p1 be
the number of phases of type 1 executed by time t . Similarly,
let p2( j) be the number of phases of type 2 executed by time
t in which Alg transmits j �min packets, for j ∈ [1, γ ]. Then,
the asymptotic throughput can be computed as follows.

TAlg(A, E, t) = �min
∑γ

j=1 j p2( j)

�max
∑γ

j=1 p2( j) + �minγ̂ p1
. (1)

From the arrival pattern A, the number of �min packets
injected by time t is exactly γ̂ p1. Hence,

∑γ

j=1 j p2( j) ≤
γ̂ p1. It can be easily observed from Eq. 1 that the asymptotic
throughput increaseswith the average number of �min packets
transmitted in the phases of type 2. Hence, the throughput
would bemaximal if all the �min packets are used in phases of
type 2with γ packets.With the abovewe obtain the following
theorem.

Theorem 3 The asymptotic throughput of Alg under adver-
sarial patterns A and E and up to time t is at most γ

γ+γ
≤ 1

2
(the equality holds iff γ is an integer).

Proof Applying the bound
∑γ

j=1 p2( j) ≥ ∑γ

j=1
j p2( j)

γ
in

Eq (1), we get

TAlg(A, E, t) ≤ �min
∑γ

j=1 j p2( j)

�max
γ

∑γ

j=1 j p2( j) + �minγ̂ p1
,

which is a function that increases with
∑γ

j=1 j p2( j). Since
∑γ

j=1 j p2( j) ≤ γ̂ p1, the asymptotic throughput can be
bounded by

TAlg(A, E, t) ≤ �minγ γ̂ p1/γ

�max
γ̂ p1
γ

+ �minγ̂ p1
= �minγ

�max + �minγ

= γ

γ + γ
.

�

Two natural scheduling policies one could consider for

this problem are the SL and LL algorithms; the first gives
priority to �min packets, whereas the second gives priority to
the �max packets. However, these two policies are not effi-
cient in the considered setting. We prove that algorithm SL
cannot have asymptotic throughput larger than 1

γ+1 under
adversarial arrivals. Algorithm LL is even worse; its asymp-
totic throughput cannot be more than 0 even under stochastic
arrivals.

Theorem 4 Algorithm SL cannot achieve asymptotic throu-
ghput larger than 1

γ+1 under adversarial arrivals, even if
there is a schedule that transmits all the packets.

Proof The scenario works as follows. At time 0 two pack-
ets arrive, one of length �max and one of length �min. SL
schedules first the packet of length �min, and when it is trans-
mitted, it schedules the packet of length �max. Meanwhile,
an offline algorithm OFF schedules first the packet of length
�max. When it is transmitted, the adversary causes an error
on the link, so SL does not transmit successfully the packet
of length �max. Now, SL only has one packet of length �max

in its queue (when this scenario is repeated will have sev-
eral, but no packets of length �min). Hence, SL schedules this
packet, while OFF schedules the packet of length �min that
has in its queue. When OFF completes the transmission of
the �min packet, the adversary causes an error on the link.
This scenario can be repeated forever. In each instance, OFF
transmits one packet of length �max and one of length �min,
while SL only transmits one packet of length �min. Hence,
the throughput achieved in this execution is �min

�max+�min
= 1

γ+1 .
Observe that at the end of each instance of the scenario, the
queue of OFF is empty. �

Theorem 5 Algorithm LL cannot achieve asymptotic throu-
ghput larger than 0, even under stochastic arrivals.
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Proof The scenario is as follows. The adversary blocks
all successful transmissions (by placing errors at distance
smaller than �min) until at least two packets have arrived, one
of length �max and one of length �min. Algorithm LL sched-
ules a packet of length �max, while an offline algorithm OFF
schedules a packet of length �min. Once OFF completes the
transmission of this packet, the adversary causes an error on
the link, and hence LL does not complete the transmission
of the �max packet. Then, again the adversary blocks suc-
cessful transmissions until OFF has at least one �min packet
pending. The scenario is repeated forever; while OFF will be
transmitting successfully all �min packets, LL will be stuck
on the unsuccessful transmissions of �max packets. Hence,
the throughput will be 0. �


4.2 Lower bound and Algorithm SL-Preamble

We therefore propose algorithm SL-Preamble, that tries to
combine in a graceful and efficient manner these two poli-
cies, SL and LL. It is a bit surprising, that their combination
provides an optimal asymptotic throughput, while none of
them is sufficiently good when considered on its own.

4.2.1 Algorithm description

At the beginning of the execution and whenever the sender is
(immediately) notified by the instantaneous feedbackmecha-
nism that a link error occurred, it checks the queue of pending
packets to see whether there are at least γ packets of length
�min available for transmission. If there are, then it schedules
γ of them—this is called a preamble—and then the algorithm
continues to schedule packets using the LL policy. Other-
wise, if there are not enough �min packets available, it simply
schedules packets following the LL policy.

4.2.2 Algorithm analysis

We show that algorithm SL-Preamble achieves an asymp-
totic throughput that matches the upper bound shown in the
previous subsection, and hence, it is optimal. Let us define
two types of time periods for the link in the executions of
algorithm SL-Preamble: the active and the inactive periods.
An active period is one during which the link experiences
no errors and the sender’s queue of pending packets (in
SL-Preamble) does not become empty.An inactive period is a
non-active one. In other words, a time interval T = [ti , ti+1)

is an active period if it starts with time instant ti such that (a)
it is the time of some task injection after an interval where the
queue of SL-Preamble has been empty, or (b) it is the time
right after an error in the link. Active period T ends with time
instant ti+1 such that (i) it is the time at which an error occurs
in the link, or (ii) it is the time at which the queue of pending
packets becomes empty for SL-Preamble.

Note that in case (a) the corresponding inactive period
had started when the queue of SL-Preamble became empty
before time ti , say at time instant t ′, and hence covers inter-
val [t ′, ti ). On the other hand, in case (b) and (i) hold, the
corresponding inactive period will only be the time instant
right before ti , and hence neither SL-Preamble nor OPT
can make any progress in transmitting a packet. Finally, in
case (b) and (ii) hold, the corresponding inactive period will
start at time ti+1 until new packets arrive at the sender, say
at time instant t ′′. Observe that during the inactive peri-
ods it must be the case that the pending queue of OPT
is also empty, otherwise it would contradict the optimality
of OPT (recall that we consider offline algorithms being
work conserving. OPT is also an offline algorithm, since
it knows both arrival and error patterns from the begin-
ning). Hence, we look at the active periods, which we
refer to as phases, and according to the above algorithm
we observe that there are four types of phases that may
occur.

1. Phase starting with �min packet and has length L <

γ�min.
2. Phase starting with �min packet and length L ≥ γ �min.
3. Phase starting with �max packet and has length L < �max.
4. Phase starting with �max packet and length L ≥ �max.

We now introduce some notation that will be used throughout
the analysis. For the execution of SL-Preamble and within
the i th phase, let ai be the number of successfully trans-
mitted �min packets not in the preambles, bi the number of
successfully transmitted �max packets, and ci the number of
successfully transmitted �min packets in preambles. For the
execution of OPT and within the i th phase, let a∗

i be the total
number of successfully transmitted �min packets and b∗

i the
total number of successfully transmitted �max packets. Let
C j

A(i) and C j
O(i) denote the total amount successfully trans-

mitted within a phase i of type j by SL-Preamble and OPT,
respectively.

Analyzing the different types of phases, we make some
observations. First, for phases of type 1, SL-Preamble is not
able to transmit successfully the γ �min packets of the pream-
ble, butOPT is only able to complete atmost asmuchwork, so
C1

O ≤ C1
A. For phases of type 2, we observe that the amount

of work completed by OPT minus the work completed by
SL-Preamble is at most �max (i.e., C2

O −C2
A < �max). There-

fore, C2
A ≥ �minγ

�max+�minγ
C2

O (observe that �minγ
�max+�minγ

≤ 1/2).

The same holds for phases of type 4 (C4
O − C4

A < �max) and
hence in this caseC4

O ≤ 2C4
A. In the case of phases of type 3,

SL-Preamble is not able to transmit successfully any packet,
and therefore C3

A = 0, whereas OPT might transmit up to
γ̂ �min packets.
There are two cases of executions to be considered separately.
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Case 1 The number of phases of type 3 is finite. In such a
case, there is a phase i∗ such that ∀i > i∗ phase i is not of
type 3. Then

R1 =
∑

j≤i∗ CA( j) + ∑
j>i∗ CA( j)

∑
j≤i∗ CO( j) + ∑

j>i∗ CO( j)
. (2)

It is clear that the total progress completed by the end
of phase i∗ by both algorithms is bounded. So we define
∑

j≤i∗ CA( j) = A and
∑

j≤i∗ CO( j) = O and thus,

R1 = A + ∑
j>i∗ CA( j)

O + ∑
j>i∗ CO( j)

≥ A + �minγ
�max+�minγ

∑
j>i∗ CO( j)

O + ∑
j>i∗ CO( j)

.

Hence, the asymptotic throughput of SL-Preamble at the
end of each phase, can be computed as T = limt→∞ R1, i.e.,

T = lim
j→∞

A + �minγ
�max+�minγ

∑
j>i∗ CO( j)

O + ∑
j>i∗ CO( j)

= lim
j→∞

(�max + �minγ )A + (�minγ )
∑

j>i∗ CO( j)

(�max + �minγ )(O + ∑
j>i∗ CO( j))

= lim
j→∞

(
�minγ

�max + �minγ

+ (�max + �minγ )A − (�minγ )O

(�max + �minγ )(O + ∑
j>i∗ CO( j))

)

= �minγ

�max + �minγ

= γ

γ + γ
.

Here it is important to note that the assumption limt→∞
CO(t) = ∞ is used, which corresponds to the expression
lim j→∞

∑
j>i∗ CO( j) in the above equality.

So far, we have basically seen what is the asymptotic
throughput of SL-Preamble at the end of each phase. It is
also important to guarantee the lower bound at all times
within the phases. Consider any time point t of phase i > i∗.
Then Ri (t) =

∑
j∈(i∗,i−1] CA( j)+Xt∑
j∈(i∗,i−1] CO ( j)+Yt

, where Xt and Yt is the

work completed by SL-Preamble and OPT within phase i
up to time t . Using our proof above and the fact that for
phases of type 1, 2, and 4 CA ≥ �minγ

�max+�minγ
CO , we know that

Xt ≥ �minγ
�max+�minγ

Yt as well. Therefore,

Ri (t) ≥
�minγ

�max+�minγ

∑
j∈(i∗,i−1] CO( j) + �minγ

�max+�minγ
Yt

∑
j∈(i∗,i−1] CO( j) + Yt

= �minγ

�max + �minγ
= γ

γ + γ
.

This completes the lower bound of asymptotic throughput
for Case 1.
Case 2 The number of phases of type 3 is infinite.
In this case, we must see how the number of �min and �max

packets are bounded for both SL-Preamble and OPT.

Lemma 1 Consider the time point t at the beginning of a
phase j of type 3. Then the number of �min packets success-
fully sent by time t by OPT is no more than the amount of
�min packets transmitted by SL-Preamble plus γ − 1, i.e.,
∑

i< j a∗
i ≤ ∑

i< j (ai + ci ) + (γ − 1).

Proof Consider the beginning of phase j of type 3. At that
point, we know that SL-Preamble has at most (γ −1) packets
of length �min in its queue by definition of phase type 3.
Therefore, the amount of �min packets transmitted byOPT by
the beginning of phase j is no more than the ones transmitted
by SL-Preamble (including the �min packets in preambles)
plus γ − 1. �

Lemma 2 Considering all kinds of phases and the number
of �max packets,

∑
i≤ j b∗

i ≤ ∑
i≤ j bi + ∑

i≤ j
ci
γ

+ 2, for
every j .

Proof We prove this claim by induction on phase j . For the
Base Case: j = 0 the claim is trivial. We consider the Induc-
tion Hypothesis stating that

∑

i≤ j−1

b∗
i ≤

∑

i≤ j−1

bi +
∑

i≤ j−1

ci

γ
+ 2 .

For the Induction Step, we need to prove it up to the end of
phase j . We first consider the case where during the phase j
there is a time when SL-Preamble has no �max packets pend-
ing. Let t be the latest such time in the phase. Let us define
b∗(t) and b(t) being the number of �max packets successfully
transmitted up to time t by OPT and SL-Preamble, respec-
tively.We know that b∗(t) ≤ b(t). Let also x∗

j (t) and x j (t) be
the number of �max packets sent by OPT and SL-Preamble,
respectively, after time point t until the end of the phase j .We
claim that x∗

j (t) ≤ x j (t) + 2. From our definitions, at time
t SL-Preamble is transmitting a �min packet. Since t is the
last time that SL-Preamble has no �max packet in its queue,
the worst case is being at the beginning of the preamble (by
inspection of the four types of phases). Then, if the phase
ends at time t ′, we define period I = [t, t ′] such that:

|I | < γ�min + (x j (t) + 1)�max ≤ (x j (t) + 2)�max.

The +1 �max packet is because of the link failure before
transmitting completely the last �max scheduled packet of the
phase. Observe that OPT could be transmitting a �max packet
at time t , received by the receiver at some point in [t, t+�max]
and accounted for in x∗

j (t). Therefore,
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∑

i≤ j

b∗
i = b∗(t) + x∗

j (t) ≤ b(t) + x j (t) + 2

=
∑

i≤ j

bi + 2.

Now consider the case where at all times of a phase j there
are �max packets in the queue of SL-Preamble. By inspection
of the four types of phases, the worst case is when j is of
type 2. Since there is always some �max packet pending in
SL-Preamble, after sending the γ �min packets, it will keep
scheduling �max packets, until a link failure corrupts the last
one scheduled, or the queue becomes empty. On the same
time OPT is able to successfully transmit at most � L j

�max
� ≤

b j + 1 packets of length �max, where L j is the length of the
phase. Therefore, in all types of phases, b∗

j ≤ c j
γ

+ b j . And

hence by induction the claim follows;
∑

i≤ j b∗
i ≤ ∑

i≤ j
ci
γ

+
∑

i≤ j bi + 2. �

Combining the two lemmas above, Lemmas 1 and 2:

R2 =
∑

i≤ j CA(i)
∑

i≤ j CO ( j)
=

∑
i≤ j [(ai + ci )�min + bi�max]
∑

i≤ j

[
a∗

i �min + b∗
i �max

]

≥
∑

i≤ j [(ai + ci )�min + bi�max]
∑

i≤ j (ai +ci )�min+(γ −1)�min+∑
i≤ j (bi + ci

γ
)�max+2�max

≥
∑

i≤ j [(ai + ci )�min + bi�max]
∑

i≤ j [(ai + 2ci )�min + bi �max] + 3�max

≥
∑

i≤ j [(ai + ci )�min + bi�max] + 3
2 �max − 3

2 �max

2
∑

i≤ j [(ai + ci )�min + bi�max] + 3�max

≥ 1

2
−

3
2 �max

2
∑

i≤ j [(ai + ci )�min + bi�max] + 3�max
.

Note that, due to parameters ai , bi and ci the second ratio
tends to zero (the denominator tends to infinity while the
nominator is constant). Therefore,

T = lim
j→∞ R2 ≥ 1

2
. (3)

Theorem 6 The asymptotic throughput of Algorithm
SL-Preamble is at least γ

γ+γ
.

Proof From the analyses of Cases 1 and 2 and the fact that
γ

γ+γ
≤ 1

2 it is easy to conclude that the asymptotic through-

put of Algorithm SL-Preamble is at least γ
γ+γ

as claimed.
�


5 Stochastic arrivals

We now turn our attention to stochastic packet arrivals. We
first consider the deferred feedbackmechanismand show that
also in this case the upper bound on the asymptotic through-
put is 0.

Theorem 7 No packet scheduling algorithm Alg can achieve
an asymptotic throughput larger than 0 under stochastic
arrivals in the deferred feedback model, even with one packet
length.

Proof As described in Sect. 2, we assume that packets arrive
at a rate λ. Here we assume that all packets have the same
length �. Observe that if λ� < 1 there are many times when
there is no packet ready to be sent and the link will be idle.
In any case, the adversary can inject errors following the
next rule: inject an error in the middle point of each packet
sent by Alg. Applying this rule, no packet sent by Alg is
received without errors. However, between two errors there
is at least � space (even if packets are contiguous) and the
offline algorithm OFF can send a packet. The conclusion
is that OFF is able to successfully send at least one packet
between two attempts of Alg, while Alg cannot complete
successfully any transmission. This completes the proof. �


The rest of the section is therefore focused on analyzing
of the immediate feedback mechanism.

5.1 Upper bounds

In order to find the upper bound of the asymptotic throughput,
we consider again an arbitrary work conserving algorithm
Alg. Recall that we assume that λp > 0 and λq > 0, which
implies that there are in fact injections of packets of both
lengths �min and �max (recall the definitions of λ, p and
q from Sect. 2). We define the following adversarial error
model E .

1. When Alg starts a phase by transmitting an �max packet
then,

(a) If OFF has �min packets pending, then the adversary
extends the phase so that OFF can transmit success-
fully as many �min packets as possible, up to γ̂ . Then,
it ends the phase so that Alg does not complete the
transmissionof the�max packet (since γ̂ �min < �max).

(b) If OFF does not have any �min packets pending, then
the adversary inserts a link error immediately (say
after infinitesimally small time ε).

2. When Alg starts a phase by transmitting an �min packet
then,

(a) IF OFF has a packet of length �max pending, then the
adversary extends the phase so OFF can transmit an
�max packet. By the time this packet is successfully
transmitted, the adversary inserts an error andfinishes
the phase. Observe that in this case Alg was able to
successfully transmit up to γ packets �min.

(b) If OFF has no �max packets pending, then the adver-
sary inserts an error immediately and ends the phase.
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Observe that in phases of type 1b and 2b, neither OFF
nor Alg are able to transmit any packet. These phases are
just used by the adversary to wait for the conditions required
by phases of type 1a and 2a to hold. In these latter types,
some packets are successfully transmitted (at least by OFF).
Hence we call them productive phases. Analyzing a possible
execution, in addition to the concept of phase that we have
already used, we define rounds. There is a round associated
with each productive phase. The round ends when its cor-
responding productive phase ends, and starts at the end of
the prior round (or at the start of the execution if no prior
round exists). Depending on the type of productive phase
they contain, rounds can be classified as type 1a or 2a.

Let us fix some (large) time t . We denote by r ( j)
1a the num-

ber of rounds of type 1a in which j ≤ γ̂ packets of length
�min are sent byOFF completed by time t . The value r ( j)

2a with
j ≤ γ packets of length �min sent by Alg, is defined similarly
for rounds of type 2a. (Here rounding effects do not have any
significant impact, since they will be compensated by the
assumption that t is large.) We assume that t is a time when a
round finishes. Let us denote by r the total number or rounds

completed by time t , i.e.,
∑γ

j=1 r ( j)
2a + ∑γ̂

j=1 r ( j)
1a = r .

The asymptotic throughput by time t can be computed as

TAlg(A, E, t) = �min
∑γ

j=1 j · r ( j)
2a

�max
∑γ

j=1 r ( j)
2a + �min

∑γ̂

j=1 j · r ( j)
1a

.

(4)

From this expression, we can show the following result.

Theorem 8 No algorithm Alg has asymptotic throughput
larger than γ

γ
.

Proof It can be observed in Eq. 4 that, for a fixed r , the
lower the value of r ( j)

1a the higher the asymptotic throughput.

Regarding the values r ( j)
2a , the throughput increases when

there aremore rounds in the larger values of j . E.g., under the
same conditions, a configurationwith r ( j)

2a = k1 and r ( j+1)
2a =

k2, has lower throughput than one with r ( j)
2a = k1 − 1 and

r ( j+1)
2a = k2 + 1. Then, the throughput is maximized when

r (γ )
2a = r and the rest of values r ( j)

1a and r ( j)
2a are 0, which

yields the bound. �

Toprovide tighter bounds for some special cases,we prove

the following lemma.

Lemma 3 Consider any two constants η, η′ such that 0 <

η < λ < η′. Then:

(a) there is a constant c > 0, dependent only on λ, p, η,
such that for any time t ≥ �min, the number of packets of
length �min (resp., �max) injected by time t is at least tηp
(resp., tηq) with probability at least 1 − e−ct ;

(b) there is a constant c′ > 0, dependent only on λ, p, η′,
such that for any time t ≥ �min, the number of packets
of length �min (resp., �max) injected by time t is at most
tη′ p (resp., tη′q) with probability at least 1 − e−c′t .

Proof Wefirst prove the statement 1(a). The Poisson process
governing arrival times of packets of length �min has parame-
ter λp. By the definition of a Poisson process, the distribution
of packets of length �min arriving to the system in the period
[0, t] is the Poisson distribution with parameter λpt . Con-
sequently, by Chernoff bound for Poisson random variables
(with parameter λpt), cf., (Mitzenmacher and Upfal 2005),
the probability that at least ηpt packets arrive to the system
in the period [0, t] is at least

1 − e−λpt (eλpt)ηpt

(ηpt)ηpt
= 1 − e−tp(λ−η ln(eλ/η)) ≥ 1 − e−ct ,

for some constant c > 0 dependent on λ, η, p. In the above,
the argument behind the last inequality is as follows. It is a
well-known fact that x > 1 + ln x holds for any x > 1; in
particular, for x = λ/η > 1. This implies that x − ln(ex) is
a positive constant for x = λ/η > 1, and after multiplying
it by η > 0 we obtain another positive constant equal to
λ − η ln(eλ/η) that depends only on λ and η. Finally, we
multiply this constant by p > 0 to obtain the final constant
c > 0 dependent only on λ, η, p.

The same result for packets of length �max can be proved
by replacing p by q = 1 − p in the above analysis.

Statement 1(b) is proved analogously to the first one, by
replacing η by η′. This is possible because the Chernoff
bound for Poisson process has the same form regardless
whether the upper or the lower bound on the Poisson value
is considered, cf., (Mitzenmacher and Upfal 2005). �


Now we can show the following result.

Theorem 9 Let p < q. Then, the asymptotic throughput of

any algorithm Alg is at mostmin
{
max

{
λp�min,

γ
γ+γ

}
,

γ
γ

}
.

Proof The claim has two cases. In the first case, λp�min ≥ γ
γ
.

In this case, the upper bound of γ
γ
is provided by Theorem 8.

In the second case λp�min <
γ
γ
. For this case, define two

constants η, η′ such that 0 < η < λ < η′ and η′ p < ηq.
Observe that such constants always exist. Then, we prove
that the asymptotic throughput of any algorithm Alg in this

case is at most max
{
η′ p�min,

γ
γ+γ

}
.

Let us introduce some notation. We use amin
t and amax

t to
denote the number of �min and �max packets, respectively,
injected up to time t . Let rofft and sofft be the number of
�max and �min packets, respectively, successfully transmitted
by OFF by time t . Similarly, let salgt be the number of �min
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packets transmitted by algorithm Alg by time t . Observe that

salgt ≥ rofft ≥ � salgt
γ

�.
Let us consider a given execution and the time instants

at which the queue of OFF is empty of �min packets in the
execution. We consider two cases.
Case 1: For each time t , there is a time t ′ > t at which OFF
has the queue empty of �min packets. Let us fix a value δ > 0
and define time instants t0, t1, . . . as follows. t0 is the first
time instant not smaller than �min at which OFF has no �min

packet and such that amin
t0 > �max. Then, for i > 0, ti is the

first time instant no smaller than ti−1 + δ at which OFF has
no �min packets. The asymptotic throughput at time ti can be
bounded as

TAlg(A, E, ti ) ≤ salgti �min

roffti �max + amin
ti �min

≤ salgti �min

� salgti
γ

��max + amin
ti �min

≤ salgti �min
(

salgti
γ

− 1

)

�max + amin
ti �min

.

This bound grows with salgti when amin
ti > �max, which

leads to a bound on the asymptotic throughput as follows.

TAlg(A, E, ti ) ≤ amin
ti �min

amin
ti

(
�max
γ

+ �min

)
− �max

= amin
ti γ

amin
ti (γ + γ ) − γ γ

.

Which as i goes to infinity yields a bound of γ
γ+γ

.
Case 2: There is a time t∗ afterwhichOFFnever has the queue
empty of �min packets. Recall that for any t ≥ �min, from
Lemma3,wehave that the number of �min packets injected by
time t satisfy amin

t > η′ pt with probability at most e−c′t and
the injected max packets satisfy amax

t < ηqt with probability
at most e−ct . By the assumption of the theorem and the defin-
ition of η and η′, η′ p < ηq. Let us define t∗ = 1/(ηq −η′ p).
Then, for all t ≥ t∗ it holds that amax

t ≥ amin
t + 1, with prob-

ability at least 1 − e−c′t − e−ct . If this holds, it implies that
OFF will always have �max packets in the queue.

Let us fix a value δ > 0 and define t0 = max(t∗, t∗), and
the sequence of instants ti = t0 + iδ, for i = 0, 1, 2, . . . By
the definition of t0, at all times t > t0 OFF is successfully
transmitting packets. Using Lemma 3, we can also claim that
in the interval (t0, ti ] the probability that more than η′ piδ
packets �min are injected is no more than e−c′′iδ .

With the above, the asymptotic throughput at any time ti
for i ≥ 0 can be bounded as

TAlg(A, E, ti ) ≤ (amin
t0 + η′ p · iδ)�min

rofft0 �max + sofft0 �min + iδ
,

withprobability at least 1−e−cti −e−c′ti −e−c′′ti .Observe that
as i goes to infinity the above bound converges to η′ p�min,
while the probability converges exponentially fast to 1. �


We now prove that algorithm SL cannot have asymptotic
throughput larger than 1

γ+1 under stochastic arrivals with
specific arrival rates. This motivates the need for devising a
new online algorithm for packet scheduling in these cases.

Theorem 10 ∀ε > 0, ∃λ, p, q such that algorithm SL can-
not achieve an asymptotic throughput larger than 1

(1−ε)γ+1+
ε.

Proof Consider an execution of the SL algorithm.We define
intervals I1, I2, . . . , Ii as follows. The first such interval, I1,
starts with the arrival of the first �min packet. Then, Ii starts
as soon as an �min packet is in the queue of SL after the end of
interval Ii−1. The length of each interval depends on whether
OFF has an �max packet in its queue at the start of the interval
or not. If it has an �max packet, the length of the interval is
|Ii | = �min+�max, and we say that we have a long interval. If
it does not, the length is |Ii | = �min and the interval is called
short.

Between intervals the adversary injects frequent errors, so
SL cannot transmit any packet. In every interval Ii ,SL starts
by scheduling an �min packet. In a short interval, OFF sends
an �min packet, followed by an error injected by the adver-
sary. Hence, in a short interval both SL and OFF successfully
transmit one �min packet. In a long interval, OFF sends an
�max packet, after which the adversary injects an error. (Up
to that point SL has been able to complete the transmission
of one or more �min packets, but no �max packet.) After the
error, OFF sends an �min packet (which is available since
beginning of the interval) after which continuous errors will
be injected by the adversary until the next interval. Hence, in
a long interval OFF successfully transmits one �min packet
and one �max packet, while SL transmits only �min packets.
This implies that in both types of intervals OFF is transmit-
ting useful packets during the whole interval.

Let us denote by sk the total length of the intervals
I1, I2, . . . , Ik , i.e., sk = ∑k

i=1 |Ii |. Observe that the total
number of �min packets that arrive up to the end of interval
Ik is bounded by k (that accounts for the �min packet in the
queue of SL at the start of each interval) plus the packets that
arrive in the intervals. From Lemma 3, we know that there
is a constant η′ > λ and a constant c′ > 0 which depends
only on η′, λ and p, such that the number of �min packets
that arrive in the intervals is at most η′ psk with probability
at least 1 − e−c′sk .
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Let Tk be the throughput of SL at the end of interval Ik .
From the above, we have that Tk is bounded as

Tk ≤ �min(k + η′ psk)

sk
= �mink

sk
+ �minη

′ p,

with probability at least π1(k) = 1 − e−c′sk . Observe that in
the above expression it is assumed that all �min packets that
arrive by the end of Ik are successfully transmitted by SL.
We provide now the following claim. �

Claim Let us consider the first x + 1 intervals Ii , for x > 1.
The number of long intervals is at least (1−δ)(1−e−λq�min)x
with probability at least 1 − e−δ2(1−e−λq�min )x/2, for any δ ∈
(0, 1).

Proof of Claim Observe that if an �max packet arrives during
interval Ii then the next interval Ii+1 is long. We consider
now the first x intervals. Since each of these intervals has
length at least �min, some �max packet arrives in the interval
with probability at least 1− e−λq�min (independently of what
happens in other intervals). Hence, using a Chernoff bound,
the probability of having less than (1 − δ)(1 − e−λq�min)x
intervals among the x first intervals in which �max packets
arrive is at most e−δ2(1−e−λq�min )x/2. This completes the proof
of the Claim. �


From the claim, it follows that there are at least (1−δ)(1−
e−λq�min)(k − 1) long intervals among the first k intervals,
with high probability. Hence, the value of sk is bounded as

sk ≥ (1 − δ)(1 − e−λq�min)(k − 1)(�max + �min)

+(k − (1 − δ)(1 − e−λq�min)(k − 1))�min

= (1 − δ)(1 − e−λq�min)(k − 1)�max + k�min

with probability at least π2(k) = 1− e−δ2(1−e−λq�min )(k−1)/2.
Note that TK cannot be larger than 1. Hence, the expected
value of Tk can be bounded as follows.

E[Tk] ≤ (1 − π1(k)π2(k)) + π1(k)π2(k)

×
(

�mink

(1−δ)(1−e−λq�min )(k−1)�max+k�min
+ �minη

′ p
)

.

Since π1(k) and π2(k) tend to one as k tends to infinity,
we have that

lim
k→∞E[Tk] ≤ �min

(1 − δ)(1 − e−λq�min)�max + �min
+ �minη

′ p

= 1

(1 − δ)(1 − e−λq�min)γ + 1
+ �minη

′ p.

Hence, choosing η′, p, q, and δ appropriately, the claim
of the theorem follows (e.g., they must satisfy �minη

′ p ≤ ε

and (1 − δ)(1 − e−λq�min) ≥ (1 − ε)).

5.2 Lower bound and Algorithm CSL-Preamble

In this section we propose algorithm CSL-Preamble (stands
for Conditional SL-Preamble), which builds on algorithm
SL-Preamble presented in Sect. 4.2, in order to solve packet
scheduling in the setting of stochastic packet arrivals. The
algorithm, depending on the arrival distribution, either fol-
lows the SL policy (giving priority to �min packets) or algo-
rithm SL-Preamble. More precisely, algorithm
CSL-Preamble acts as follows:

If λp�min >
γ
2γ then algorithm SL is run, otherwise

algorithm SL-Preamble is executed.

Then we show the following:

Theorem 11 The asymptotic throughput of algorithm
CSL-Preamble is not smaller than γ

γ+γ
for λp�min ≤ γ

2γ ,

and not smaller than min
{
λp�min,

γ
γ

}
otherwise.

Proof We consider three complementary cases.
Case λp�min ≤ γ

2γ . In this case algorithm CSL-Preamble
runs algorithm SL-Preamble, achieving, per Theorem 6,
asymptotic throughput of at least γ

γ+γ
under any error pat-

tern.
Case γ

2γ < λp�min ≤ 1. Our goal is to prove that the

asymptotic throughput is not smaller than min
{
ηp�min,

γ
γ

}
,

for any η = δλ, with δ < 1. Considering such an η, we
can make use of Lemma 3 with respect to λ, η, p. The
asymptotic throughput compares the behavior of algorithm
CSL-Preamble, which is simply SL in this case, with OPT
for each execution. Hence, for the purpose of the analysis
we introduce the following modification in every execution:
we remove all periods in which OPT is not transmitting
any packet. By “removing” we understand that we count
time after removing the OPT-unproductive periods and “glu-
ing” the remaining periods so that they form one time line.
Observe that any time instant t in the modified time line, say
t = tm , cannot be larger than the corresponding time t in the
global time line, say tg (i.e., tm ≤ tg). In the remainder of the
analysis of this case, we consider these modified executions
with modified time lines and whenever we need to refer to
the “original” time line we use the notion of global time.

For any positive integer i , we define time points ti =
i × �max. Consider events Si , for positive integers i , defined
as follows: the number of packets arrived by time ti (on the
modified time line of the considered execution) is at least
tiηp. ByLemma3 and the fact that tm ≤ tg , there is a constant
c dependent only on λ, η, p such that for any i : the event Si

holds with probability at least 1 − e−cti .
Consider an integer j > 1 being a square of another inte-

ger. We prove that by time t j , the asymptotic throughput is
at least
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min

{

ηp�min − γ �min

t j
, (1 − 1/

√
j) × γ

γ

}

,

with probability at least 1−c′e−ct√ j , for some constant c′ > 1
dependent only on λ, η, p. To show this, consider two com-
plementary scenarios that may happen at time t j : there are
at least γ pending packets of length �min, or otherwise. It is
sufficient to show the sought property separately in each of
these two scenarios. �


Consider the first scenario, when there are at least γ pend-
ing packets of length �min at time t j . With probability at least
1 − c′e−ct√ j , for every

√
j ≤ i ≤ j at least tiηp packets

arrive by time ti . This is because of the union bound of the
corresponding events Si and the fact that

∑
i≥√

j e−cti ≤
c′ × e−ct√ j for some constant c′ > 1 dependent on λ, η, p
(note here that although c′ seems to depend also on c, c′ is
still dependent only onλ, η, p because c is a function of these
three parameters as well). Consider executions in

⋃ j
i=√

j
Si ;

executions at which all Si events happen, for
√

j ≤ i ≤ j .
Using induction on i , we prove the following claim:

Claim At least tiηp−γ packets of length �min have been suc-
cessfully transmitted by time ti , or at least γ packets of length
�min are successfully transmitted in the interval [ti , ti+1].
Proof of Claim First, recall that algorithm CSL-Preamble
runs the SL policy, since λp�min >

γ
2γ . Hence, as long as

there are �min packets pending, itwill schedule them for trans-
mission. Recall also, that times ti represent time instants such
that ti = i × �max in the modified time line.

Base case: By time t√ j and with probability at least

1− ect√ j , there will be at least ηpt√ j packets of length �min

arriving. Now since t√ j+1 = t√ j + �max, if there are at
least γ pending packets of length �min at time t√ j , they will
be successfully transmitted during the interval [t√ j , t√ j+1],
which guarantees the invariant. Otherwise, there are at least
ηpt√ j −γ pendingpackets of length �min at time t√ j (asmany
as the ones that arrived minus the completed ones since the
beginning of the execution, in a duration of

√
j ×�max time).

Induction hypothesis: For
√

j < k < j , the invariant
holds.

Induction step: We will show that the invariant holds
for k + 1. Since we consider only executions in the union⋃ j

i=√
j

Si , we know that by time tk+1 = (k +1)×�max, there
are at least ηptk+1 packets of length �min arriving, with prob-
ability at least 1− c′e−ct√ j . Now, since tk+2 = tk+1 + �max,
if there are at least γ pending packets of length �min at time
tk+1, they will be successfully transmitted during the interval
[tk+1, tk+2]. Otherwise, there are at least ηptk+1 − γ pend-
ing packets of length �min at time tk+1 (as many as the ones
that arrived minus the completed ones since the beginning
of the execution, in a duration of (k + 1) × �max time). This

guarantees the invariant and hence completes the proof of the
Claim. �


The inductive proof of this invariant follows directly from
the specification of algorithm CSL-Preamble (recall that it
simply runs algorithm SL in the currently considered case)
and from the definition of the modified execution and time
line. Let i∗ denote the largest i ∈ [√ j, j] satisfying the
following condition: there are less than γ packets of length
�min pending in time ti ; if such an i does not exist, we set
i∗ = −1. Consider two sub-cases:

Sub-case i∗ = −1(i∗ does not exist). Note that, by defi-
nition of i∗, at every time ti ∈ [√ j, j], there are at least γ

pending packets of length �min pending. Consequently, by the
specification of the algorithmCSL-Preamble, in each interval
[ti , ti+1], for √

j ≤ i < j , at least γ packets of length �min

finish their transmission successfully. Therefore, by time t j

the total length of �min-packets successfully transmitted by
algorithm CSL-Preamble is at least

t j − t√ j

�max
× γ �min,

while the total length of successfully transmitted packets by
OPT is at most t j (by the definition of the modified execution
and time line). Hence, the asymptotic throughput is at least

t j −t√ j
�max

× γ �min

t j
= (1 − 1/

√
j) × γ

γ
,

which converges to γ
γ
with j going to infinity.

Sub-case i∗ ∈ [√ j, j]. It follows from the invariant and
the definition of i∗ that by time ti∗ there are at least ti∗ηp −γ

successfully transmitted packets of length �min, and in each
interval [ti , ti+1], for i∗ ≤ i < j , at least γ packets of length
�min finish their transmission successfully. Therefore, by time
t j the total length of �min-packets successfully transmitted by
algorithm CSL-Preamble is at least

(ti∗ηp − γ )�min + t j − ti∗

�max
× γ �min,

while the total length of successfully transmitted packets by
OPT is at most t j (by the definition of the modified execution
and time line). Therefore the asymptotic throughput is at least

(ti∗ηp − γ )�min + t j −ti∗
�max

× γ �min

t j
(∗)

≥ min

⎧
⎨

⎩

(t jηp − γ )�min

t j
,

t j −t√ j
�max

× γ �min

t j

⎫
⎬

⎭

= min

{

ηp�min − γ �min

t j
, (1 − 1/

√
j) × γ

γ

}

,
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which converges tomin
{
ηp�min,

γ
γ

}
with j going to infinity.

For the proof of inequality (*) in the above expression see
the Lemmas 4 and 5 in the Appendix.

Finally, it is important to notice that the final converge
of the ratio, with j going to infinity, in both sub-cases
gives a valid bound on the asymptotic throughput, since
the subsequent ratios hold with probabilities approaching
1 exponentially fast (in j), i.e., with probabilities at least
1−c′e−ct√ j , where c and c′ are positive constants dependent
only onλ, η, p. Theminimumof the twoasymptotic through-

puts, coming from the sub-cases, is min
{
ηp�min,

γ
γ

}
, as

desired and therefore the asymptotic throughput is at least

min
{
δλp�min,

γ
γ

}
in this case.

Case λp�min > 1. In this case, we simply observe that
we get at least the same asymptotic throughput as in case
λp�min = 1, because we are dealing with executions satu-
rated with packets of length �min with probability converging
to 1 exponentially fast (recall that we use the same algo-
rithm SL in the specification of CSL-Preamble, both for
λp�min = 1 and for λp�min > 1). Consequently, the asymp-

totic throughput in this case is at least min
{
ηp�min,

γ
γ

}
,

for any λ/2 < η < λ, and therefore it is at least

min
{
λp�min,

γ
γ

}
≥ min

{
1, γ

γ

}
= γ

γ
.

Observe that if we compare the upper bounds on asymp-
totic throughput shown in the previous subsection with the
lower bounds of the above theorem, then we may con-
clude that in the case where γ is an integer, algorithm
CSL-Preamble is optimal (wrt asymptotic throughput). In the
case where γ is not an integer, there is a small gap between
the upper and lower bound results.

6 Randomized algorithms

So far we have considered deterministic solutions. In many
problems considered in computer science, randomized solu-
tions can obtain better performance. Using Yao’s princi-
ple, Yao (1977), we show that this is not the case for the
problem considered in this work.

For arrival pattern A, adversarial error-function E , string
of random bits R and time t , we define the asymptotic
throughput TAlg(A, E, R, t) of a randomized algorithm Alg
by time t as follows:

TAlg(A, E, R, t) = LAlg(A, E, R, t)

LOPT(A, E, R, t)
.

TAlg(A, E, R, t) is defined as 1 if LAlg(A, E, R, t) =
LOPT(A, E, R, t) = 0. And we define the asymptotic
throughput of algorithm Alg in the adversarial arrival model
as follows:

TAlg = lim
t→∞ inf

A∈A,E∈E
ER∈R[TAlg(A, E, R, t)],

where R is a distribution of all possible strings of random
bits used by the algorithm. In the stochastic arrival model,
the asymptotic throughput needs to take into account the ran-
dom distribution of arrival patterns in A and it is defined as
follows:

TAlg = lim
t→∞ inf

E∈E
EA∈A,R∈R[TAlg(A, E, R, t)].

Based on the above definitions, we apply now Yao’s prin-
ciple, Yao (1977), to obtain the following result.

Observation 1 All upper bounds found for deterministic
algorithms in Sects. 4 and 5 with instantaneous feedback,
hold also for randomized algorithms, even for oblivious
adversaries.

Yao’s principle states the following: Given an online prob-
lem, let cR be the smallest competitive ratio of randomized
online algorithmR against any oblivious adversary. Let also
P be a probability distribution for the input sequence, such
that cP

A is the smallest competitive ratio of deterministic
online algorithm A under P . Then, the competitive ratio of
the best randomized algorithm against any oblivious adver-
sary, is equal to the competitive ratio of the best deterministic
online algorithm under a worst-case input distribution, i.e.,
inf
R

cR = sup
P

inf
A

cP
A .

7 Conclusions

This work was motivated by the following observation
regarding the system of dynamic packet arrivals with errors:
Scheduling packets of same length is relatively easy and
efficient in case of instantaneous feedback, but extremely
inefficient in case of deferred feedback. We studied scenarios
with two different packet lengths, developed efficient algo-
rithms, and proved upper and lower bounds for asymptotic
throughput in the average-case (i.e., stochastic) and worst-
case (i.e., adversarial) online packet arrivals. These results
demonstrate that exploring instantaneous feedback mecha-
nisms (and developing more effective implementations of it)
has the potential to significantly increase the performance of
communication systems.

Several future research directions emanate from thiswork.
Some of them concern the exploration of variants of the
considered model, for example, considering more elabo-
rated/realistic distributions for the packet arrival, assuming
that packets that suffer errors are not retransmitted [which
applies when forward error correction (Raghavan et al. 2001)
is used], considering packets of more than two lengths, or
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assuming bounded buffers. Other lines of work deal with
adding QoS requirements to the problem, such as requiring
fairness in the transmission of packets from different flows or
imposing deadlines to the packets. In the considered adver-
sarial setting, it is easy to see that even an omniscient offline
solution cannot achieve stability: for example, the adversary
could prevent any packet from being transmitted correctly.
Therefore, an interesting extension of our work would be to
study conditions (e.g., restrictions on the adversary) under
which an online algorithm could maintain stability, and still
be efficient with respect to asymptotic throughput. Finally,
we believe that the definition of asymptotic throughput as
proposed here can be adapted, possibly in a different con-
text, to other metrics and problems.
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Appendix

Lemma 4 When ηp�min ≤ γ
γ

it holds that

(ti∗ηp−γ )�min+ t j −ti∗
�max

γ �min

t j
≥ (t j ηp−γ )�min

t j
.

Proof Let us assume first the case of i∗ < j . This means
that:

ηp�min ≤ γ

γ
= ( j − i∗)γ

( j − i∗)γ
= ( j − i∗)γ �min

( j − i∗)�max

⇒ ηp�min(i
∗ − j)�max + ( j − i∗)γ �min ≥ 0

⇒ i∗�maxηp�min + ( j − i∗)γ �min ≥ j�maxηp�min

⇒ ti∗ηp�min + t j − ti∗

�max
γ �min ≥ t jηp�min

⇒ (ti∗ηp − γ )�min + t j − ti∗

�max
γ �min ≥ (t jηp − γ )�min.

What is more, for the case when i∗ = j , we have that:

(ti∗ηp − γ )�min = (t jηp − γ )�min

⇒ (ti∗ηp − γ )�min + t j − ti∗

�max
γ �min ≥ (t jηp − γ )�min.

Both cases conclude to the same, which proves the lemma.
�


Lemma 5 When ηp�min >
γ
γ

it holds that

(ti∗ηp−γ )�min+ t j −ti∗
�max

γ �min

t j
≥

(t j −t√ j )

�max
γ �min

t j
.

Proof When ηp�min >
γ
γ
, the following is also true:

ηp�min ≥ γ

γ
+ (1 − √

j)γ

i∗γ
.

This means that:

ηp�min ≥ (1 + i∗ − √
j)γ �min

i∗�max

⇒ ηp�mini∗�max + γ �min( j − i∗ − 1 − j + √
j) ≥ 0

⇒ i∗�maxηp�min − γ �min + ( j − i∗)γ �min ≥ ( j − √
j)γ �min

⇒ (ti∗ηp − γ )�min + t j − ti∗
�max

γ �min ≥
(t j − t√ j )

�max
γ �min.

�
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