
	

	

	

CoherentPaaS
Coherent and Rich PaaS with a
Common Programming Model

ICT FP7-611068

CoherentPaaS	
Global	
Architecture	
D10.1	

March	2014

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page	1/15

	

	 	

Document Information
Scheduled	delivery	 	 31.03.2014	
Actual	delivery	 	 30.	04.2014	
Version	 	 	 1.0	
Responsible	Partner		 UPM	

Dissemination Level:
PU	 Public	
PP	 Restricted	to	other	programme	participants	(including	the	Commission)	
RE	 Restricted	to	a	group	specified	by	the	consortium	(including	the	Commission)	
CO	 Confidential,	only	for	members	of	the	consortium	(including	the	Commission)	
	
Revision History
Date	 Editor	 Status Version Changes
15.02.2014	 Ricardo	

Jiménez	
Draft	 0.1 TOC

21.02.2014	 Ricardo	
Jiménez	

Draft	 0.2 First	complete	draft	

28.02.2014	 Marta	
Patiño	

Draft	 0.3 Second	draft

8.03.2014	 Marta	
Patiño	

Revised 0.4 First	peer	review

15.03.2014	 Marta	
Patiño	

Revised 0.5 Second	peer	review	

20.03.2014	 Ricardo	
Jiménez	

Final	 1.0 Final	version

Contributors
Ricardo Jiménez Peris (UPM)
Marta Patiño (UPM)
Iván Brondino (UPM)
Valerio Vianello (UPM)

Internal Reviewers
Pavlos Kranas NTUA
Martin Kersten MonetDB

Acknowledgements
Research	 partially	 funded	 by	 EC	 7th	 Framework	 Programme	 FP7/2007‐2013	 under	
grant	agreement	n°	611068.	

More information
Additional	information	and	public	deliverables	of	CoherentPaaS	can	be	found	at:	http://	
coherentpaas.eu	

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page	2/15

	

	 	

Glossary of Acronyms

Acronym	 Definition	
D	 Deliverable	
DoW	 Description	of	Work	
EC	 European	Commission
PM		 Project	Manager	
PO	 Project	Officer	
WP	 Work	Package	

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page	3/15

	

	 	

Table of Contents
1. Executive	Summary	..	5
2. Global	view	...	6
3. CoherentPaaS	Subsystems	..	8
3.1. Holistic	Transactions	...	8
3.1.1. Conflict	Management	..	9
3.1.2. Logging	&	Recovery	..	9
3.1.3. Versioning	..	10

3.2. Common	Query	Engine	..	10
3.3. X‐Ray	Monitoring	...	11
3.4. Data	Stores	and	CEP	..	12
3.5. PaaS	Manager	...	13

4. References	...	14

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page	4/15

	

	 	

List of Figures
Figure	1:	CoherentPaaS	Global	Architecture	..	7
	

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page	5/15

	

	 	

1. Executive Summary
This	 deliverable	 provides	 the	 global	 architecture	 of	 CoherentPaaS.	 It	 provides	 a	
summary	of	 the	vision	of	 the	project,	 its	subsystems,	and	how	they	are	 integrated	and	
interact	among	each	other.	

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page	6/15

	

	 	

2. Global view
The	 Project	 ambition	 is	 to	 remedy	 the	 current	 situation	 for	 building	 scalable	 cloud	
applications.	Application	developers	today	have	to	use	a	combination	of	different	cloud	
data	management	technologies	that	are	totally	disparate.	For	instance,	a	graph	database,	
a	 key‐value	 data	 store	 together	 with	 a	 relational	 database.	 This	 totally	 lack	 of	
coordination	 across	 cloud	data	 stores	 creates	many	difficulties.	 The	main	 three	 issues	
are	lack	of	data	coherence	across	different	data	stores,	the	large	development	efforts	to	
develop	queries	across	cloud	data	stores	that	should	be	programmed	manually,	and	the	
difficulty	of	performing	performance	debugging	in	applications	across	several	cloud	data	
stores.		
	
The	CoherentPaaS	project	addresses	these	difficulties	with	three	contributions.	The	data	
coherence	 issue	 is	 addressed	 by	 providing	 holistic	 transactions	 for	 all	 data	 stores.	
Depending	on	each	data	store,	this	might	mean	some	might	simply	integrate	their	local	
transactional	 processing	 with	 the	 holistic	 one,	 and	 for	 others	 to	 fully	 implement	
transactional	 processing.	 The	 result	 is	 a	 single	 transactional	 manager	 that	 enables	
transactions	across	any	combination	of	data	stores	providing	full	ACID	semantics.	This	
transactional	 manager	 leverages	 the	 ultra‐scalable	 transactional	 processing	 from	
CumuloNimbo	 guaranteeing	 that	 it	 can	 reach	 any	 required	 scale	 without	 creating	 a	
bottleneck	in	transactional	processing.	
	
The	 issue	 of	 the	 effort	 for	 performing	 queries	 across	 data	 stores	 is	 addressed	 by	
developing	 a	 global	 query	 language	 	 and	 its	 engine	 able	 to	 run	 queries	 written	 in	 (a	
subset	 of)	 SQL	 across	 any	 set	 of	 data	 stores.	 Since	 some	 of	 the	 data	 stores	 have	 a	
specialized	 API	 or	 query	 language	 that	 is	 crucial	 to	 attain	 high	 performance,	 as	 for	
instance,	graph	databases,	the	proposed	query	language	can	also	embed	subqueries	fully	
written	 in	 the	 native	 query	 language/API	 of	 the	 cloud	 data	 store.	 In	 this	 way,	 it	 is	
possible	 to	 combine	 the	 full	 power	 of	 the	 native	 query	 languages	 with	 the	 full	
expressivity	of	SQL	to	query	across	data	stores	and	get	the	best	of	the	two	worlds.	The	
common	 query	 language	 engine	 is	 also	 integrated	 with	 the	 holistic	 transactions	 to	
guarantee	full	transactional	consistency	for	transactions	involving	global	queries.	
	
The	 issue	 of	 the	 difficulty	 of	 doing	 performance	 debugging	 in	 complex	 applications	
involving	 multiple	 cloud	 data	 stores	 is	 addressed	 by	 a	 combination	 of	 contributions.	
First	of	all,	we	will	provide	a	framework	to	instrument	transparently	applications	to	do	
fine	 grain	 monitoring	 of	 the	 time	 spent	 on	 each	 application	 method	 and	 on	 each	
invocation	to	cloud	data	stores.	In	this	way,	it	will	become	possible	to	find	out	where	the	
performance	bottlenecks	are	happening	at	the	application	level.	Additionally,	the	cloud	
data	stores	themselves	will	be	monitored	at	fine	grain	level	as	well.	This	monitoring	will	
be	correlated	with	the	application	performance.	The	monitoring	capabilities	will	enable	
application	developers	to	perform	fine	tuning	of	the	cloud	data	stores	and	find	out	what	
configuration	is	the	most	adequate	for	their	workloads.	
	
The	different	subsystems	are	depicted	in	Figure	1.	The	holistic	transaction	management	
includes	all	the	components	for	the	ultra‐scalable	transactional	processing.	It	interfaces	
with	all	cloud	data	stores,	NoSQL,	SQL	and	CEP.	The	common	query	language	engine	is	
depicted	 close	 to	 the	 top	 between	 the	 applications	 and	 the	 cloud	 data	 stores.	 It	
interfaces	 with	 all	 cloud	 data	 stores	 and	 also	 with	 the	 holistic	 transactional	

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page	7/15

	

	 	

management.	The	x‐ray	monitoring	subsystem	provides	the	monitoring	framework	that	
is	integrated	with	all	subsystems	and	the	deployed	applications.		There	is	a	component	
in	charge	of	platform	management	 taking	care	of	elastic	 reconfiguration	decisions	and	
the	deployment	of	the	platform	in	a	cloud	environment.	Finally,	on	top	of	the	figure	the	
addressed	use	cases	are	depicted.	These	use	cases	have	been	selected	because	they	have	
the	 potential	 to	 take	 advantage	 of	 the	 use	 of	 multiple	 cloud	 data	 management	
technologies	integrated	in	the	project.	
	
	

	
	Figure	1:	CoherentPaaS	Global	Architecture

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page	8/15

	

	 	

3. CoherentPaaS Subsystems

3.1. Holistic Transactions
One	 of	 the	 three	major	 goals	 of	 the	 project	 is	 to	 provide	 transactional	 coherence	 for	
updates	 across	 cloud	 data	 stores.	 For	 this	 purpose,	 the	 project	 plans	 to	 leverage	 the	
CumuloNimbo	ultra‐scalable	transactional	processing	and	extend	it	to	support	multiple	
cloud	data	stores.	
	
The	 planned	 design	 for	 this	 extension	 was	 homogeneous,	 more	 concretely,	 it	 was	
planned	 that	 all	 the	 transactional	 processing	 would	 be	 performed	 by	 the	 holistic	
transactional	manager.	However,	some	of	the	cloud	data	store	vendors	participating	as	
partners	 in	 the	 project	 have	 started	 to	 see	 value	 in	 this	 offering	 and	 are	 willing	 to	
develop	 the	 transactional	 functionality	 themselves	 in	 order	 to	 be	 able	 to	 exploit	 this	
feature	 also	 individually	 for	 their	 cloud	 data	 store.	 For	 this	 reason	 the	 design	 of	 the	
holistic	transactions	has	been	extended	beyond	the	initial	conception	at	proposal	time	to	
be	flexible	an	allow	both	the	case	in	which	transactional	processing	is	fully	delegated	to	
the	holistic	transactional	manager	and	the	case	in	which	the	transactional	processing	is	
performed	 locally	 and	 only	 interacts	 with	 the	 holistic	 transactional	 processing	 when	
required.	
	
The	 holistic	 transactional	manager	 provides	 snapshot	 isolation	 as	 consistency	 criteria	
[Berenson95].	The	 functionalities	 from	the	holistic	 transactional	manager	 that	need	 to	
be	integrated	with	the	cloud	data	stores	are	the	following:	

 Conflict	 management.	 This	 functionality	 lies	 in	 checking	 whether	 there	 are	
updates	by	two	different	concurrent	transactions	over	the	same	key.	

 Logging.	The	updates	of	a	transaction	(writeset)	should	be	made	durable	before	
notifying	the	client	application	about	the	commit	of	the	transaction.	

 Making	 public	 the	 transaction	 updates.	 Once	 the	 commit	 of	 the	 transaction	 is	
successful	 the	results	of	 the	 transaction	should	be	made	public	so	 they	become	
potentially	readable.	

 Recovery.	In	the	advent	of	a	failure,	it	has	to	be	found	out	which	transactions	are	
committed	and	which	aborted.	Resources	kept	by	aborted	transactions	should	be	
released.	 Committed	 transactions	 that	 are	 in	 doubt	 should	 be	 redone	 from	 the	
log.	

 Removal	of	obsolete	versions.	Some	versions	of	the	data	will	never	be	read	again.	
In	 order	 to	 release	 its	 space,	 the	 transactional	manager	 finds	 out	which	 is	 the	
oldest	transaction	and	its	start	timestamp.	Any	version	for	which	another	version	
exists	that	equal	or	lower	than	that	timestamp	can	be	removed	since	it	cannot	be	
read	by	any	transaction.	

 Regulating	which	version	to	read	by	means	of	a	start	timestamp.	
 Regulating	 the	 version	 with	 which	 to	 label	 committed	 updates	 when	 making	

them	public.	
	
The	holistic	transactional	manager	consists	of	a	set	of	different	roles	and	many	of	these	
roles	 are	 distributed	 servers	 themselves.	 In	 this	 deliverable	we	do	not	 detail	 how	 the	
holistic	 transactional	 manager	 is	 architected	 internally,	 since	 this	 is	 done	 in	 the	
corresponding	deliverable.	In	here,	we	treat	as	an	abstract	server	that	is	accessed	via	a	

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page	9/15

	

	 	

proxy	 that	we	 call	 local	 transactional	manager.	 Cloud	data	 stores	 are	 provided	with	 a	
local	 transactional	manager	 instance	 that	 is	 collocated	with	 all	 instances	 of	 the	 cloud	
data	store	that	are	capable	of	bracketing	transactions.	This	is	done	typically	at	the	client	
proxy	of	the	data	store,	but	it	can	also	be	done	at	the	server	side	of	the	cloud	data	store.	
It	 should	 be	 noted	 that	 the	 life	 cycle	 of	 a	 transaction	 should	 be	managed	 at	 the	 side	
where	there	is	the	notion	of	the	session	for	the	transaction	and	all	interactions	with	the	
holistic	 transactional	 manager	 should	 be	 performed	 by	 the	 same	 instance	 of	 the	
component	on	the	cloud	data	store	side.		

3.1.1. Conflict Management

Conflicts	that	have	to	check	are	only	write‐write	conflicts,	since	transactional	isolation	is	
based	on	snapshot	isolation	[Berenson95].	A	CoherentPaaS	cloud	data	store	can	handle	
conflict	management	in	two	ways.	The	first	way	is	fully	delegating	conflict	management	
to	the	CoherentPaaS	holistic	transactional	manager.	In	this	case,	the	cloud	data	store	has	
to	 check	 periodically	 by	means	 of	 the	 conflict	manager	 service	 all	 the	 keys	 that	 have	
been	 updated	 by	 all	 the	 active	 transactions.	 Each	 active	 transaction	 is	 checked	
independently.	 The	 keys	 should	 be	 unique	 for	 a	 given	 data	 store	 so	 they	 should	 be	
qualified	with	the	table	name	and	the	key	in	the	case	of	table	oriented	data	stores	and	in	
general	with	any	sequence	of	qualifiers	to	guarantee	that	they	are	unique.		
	
For	cloud	data	stores	that	are	handling	transactional	semantics	themselves,	they	might	
decide	 to	handle	 the	 conflict	management	within	 the	 cloud	data	 store.	The	 cloud	data	
store	 should	guarantee	 that	 the	 transaction	does	not	have	any	 conflict	before	 starting	
the	 commit	phase	of	 the	 transaction.	 If	 there	 is	 a	 conflict,	 the	 cloud	data	 store	 should	
rollback	the	transaction.	
	

3.1.2. Logging & Recovery
In	 order	 to	 guarantee	 durability	 the	 holistic	 transactional	 manager	 performs	 logging.	
The	holistic	transactional	recovery	is	redo	only,	and	therefore,	it	only	stores	postimages	
of	the	updated	data	to	execute	redo	actions	during	recovery.	Again	there	are	two	ways	to	
handle	logging,	it	can	be	fully	delegated	to	the	holistic	transactional	manager,	or	it	can	be	
handled	by	both	the	cloud	data	store	and	the	holistic	transactional	manager.	
	
If	 the	 logging	 is	 fully	 delegated	 to	 the	 holistic	 transactional	 manager,	 then	 when	 the	
client	 triggers	 the	 commit	 of	 a	 transaction	 the	 cloud	 data	 store	 should	 provide	 the	
writeset	 (all	 the	updates	performed	by	 the	 transaction	 in	 the	 cloud	data	 store)	 to	 the	
holistic	 transactional	manager.	 The	writeset	 can	 have	 any	 representation	 since	 it	will	
only	 be	 handled	 by	 the	 cloud	 data	 store	 and	 it	 is	 opaque	 for	 the	 holistic	 transaction	
manager.		However,	it	should	be	self‐sufficient,	it	should	contain	all	the	information	for	
the	cloud	data	store	so	it	can	redo	the	transaction	upon	recovery.	
	
If	 the	 logging	 is	 not	 fully	 delegated	 to	 the	 holistic	 transactional	manager	 because	 the	
cloud	 data	 store	 is	 performing	 transactional	 management,	 it	 should	 be	 taken	 into	
account	 that	 the	 definitive	 logging	 will	 only	 be	 the	 one	 of	 the	 holistic	 transactional	
manager.	The	cloud	data	store	can	 log	 itself	 locally	the	writeset,	but	then	it	has	still	 to	
provide	as	writeset	to	the	holistic	transactional	manager	the	minimal	information	so	it	
can	 perform	 recovery.	 Typically,	 in	 this	 case,	 the	 information	 logged	 at	 the	 holistic	
transactional	manager	will	 be	 a	 handle	 that	 upon	 recovery	will	 enable	 the	 cloud	data	
store	to	find	locally	the	redo	record	and	apply	it.	It	should	be	noted	that	the	log	record	

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page	10/15

	

	 	

locally	 stored	at	 the	cloud	data	 store	 in	 this	case	will	behave	as	a	prepare	 record	 in	a	
traditional	 two‐phase	 commit,	 therefore,	 not	 definitive	 till	 the	 holistic	 transaction	
manager	reports	that	the	transaction	is	durable	at	holistic	level.		
	
Upon	recovery	a	cloud	data	manager	will	first	perform	local	recovery	to	the	extent	it	is	
handling	it	and	then,	it	will	perform	the	recovery	with	the	holistic	transaction	manager.	
After	the	holistic	recovery,	it	will	be	able	to	start	giving	service	to	clients.	
	

3.1.3. Versioning
After	 making	 durable	 the	 updates	 at	 holistic	 level,	 a	 local	 transaction	 manager	 will	
instruct	all	data	stores	involved	in	the	transaction	to	make	the	updates	public.	Till	then,	
versions	will	be	kept	as	private	versions	 (invisible	 to	other	 transactions).	This	will	be	
done	 providing	 the	 commit	 timestamp	 associated	 to	 the	 versions.	 This	 commit	
timestamp	should	be	used	for	labelling	versions.	
	
When	 a	 transaction	 starts	 it	 is	 provided	 with	 the	 start	 timestamp	 that	 indicates	 the	
version	of	the	data	that	a	transaction	should	 	read.	More	concretely,	 it	should	read	the	
version	with	the	highest	timestamp	such	that	is	lower	or	equal	than	the	start	timestamp.	
Data	 stores	 should	 be	 able	 to	 use	 the	 externally	 provided	 timestamp	 and	 compare	 it	
with	the	one	used	to	label	versions	to	find	efficiently	the	versions	to	be	read.	
	
Another	crucial	 issue	for	the	transactional	 integration	is	garbage	collection	of	obsolete	
versions	 (not	 to	be	 confused	with	 Java	Garbage	 collection	 that	happens	at	 the	 level	of	
JVM	runtime	system).	A	version	of	a	data	item	that	is	not	the	last	one	can	only	be	read	by	
a	 transaction,	 if	 the	 transaction	 start	 timestamp	 is	 equal	 or	 higher	 than	 the	 commit	
timestamp	of	the	data	item	and	the	last	version	of	the	data	item	is	higher	than	the	start	
timestamp	of	 that	 transaction.	 If	 all	 active	 transactions	have	 a	 start	 timestamp	 that	 is	
strictly	higher	than	the	commit	timestamp	of	a	later	version,	this	version	will	never	be	
read.	Since	obsolete	versions	occupy	space,	they	should	be	removed.	
	
The	 integration	with	 the	holistic	 transactional	manager	 is	materialized	by	periodically	
reporting	 to	 the	 cloud	 data	 stores	 about	 the	 lowest	 start	 timestamp	 among	 active	
transactions.	With	this	information,	cloud	data	stores	should	be	able	to	remove	obsolete	
versions	in	an	efficient	way.	This	is	very	important	since	obsolete	version	removal	can	
become	a	heavy	process.	
	
	

3.2. Common Query Engine
The	 common	 query	 language	 MdbQL	 is	 designed	 to	 be	 capable	 of	 querying	 multiple	
heterogeneous	 databases	 (relational	 and	 NoSQL)	 within	 a	 single	 query	 that	 can	
potentially	 contain	 nested	 sub‐queries	 written	 in	 the	 native	 query	 languages	 of	 the	
queried	data	stores.	
	
MdbQL	 is	 based	 on	 the	 relational	 data	 model,	 because	 of	 its	 intuitive	 data	
representation,	 wide	 acceptance	 and	 ability	 to	 integrate	 datasets	 by	 applying	 joins,	
unions	 and	other	 relational	 algebra	 operations.	MdbQL	keeps	 its	 common	data	model	
schema‐less	 in	 order	 to	 simplify	 data	 integration	 and	 avoid	 the	 trouble	 of	 describing	

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page	11/15

	

	 	

multiple	 evolving	 data	 models.	 Thanks	 to	 its	 common	 data	 model	 all	 the	 datasets	
retrieved	from	the	data	sources	match	this	common	model.	
	
MdbQL	 is	 able	 to	 embed	 subqueries	 in	 the	 native	 query	 language/API	 of	 the	 queried	
data	store.	 In	order	 to	support	 functional	 transformations,	MdbQL	queries	can	contain	
constructs	of	the	programming	language	Python.	Python	is	quite	rich	in	data	types,	easy	
to	use,	and	rich	in	standard	libraries	and	widely	used.	
	
MdbQL	 introduces	 the	 notion	 of	 “table	 expression”	 an	 expression	 that	 returns	 a	 table	
(relation	–	a	structure,	compliant	with	the	common	data	model).	Table	expressions	are	
used	 to	 represent	 nested	 queries	 and	 typically	 query	 a	 particular	 data	 store.	 Table	
expression	can	be	SQL,	Python	code	snippets	producing	relations	and	native	expressions	
querying	a	data	store	in	its	native	query	language.	A	table	expression	can	be	assigned	a	
name	 and	 a	 signature,	 thus,	 becoming	 a	 “named	 table	 expression”,	which	 can	 then	be	
used	in	the	FROM	clause	of	the	query	as	any	other	regular	relation.	
	
MdbQL	 also	 introduces	 the	 notion	 of	 “action	 expressions”,	 which	 can	 contain	 data	
operations	on	a	data	store.	They	are	instantiated	by	an	EXECUTE	clause.	For	an	SQL	data	
store	an	action	expression	contains	SQL	DML	command,	while	for	a	NoSQL	data	store	an	
action	 expression	 contains	 invocations	 to	 the	 data	 store’s	 native	 query	API.	 An	 action	
expression	 can	 instantiate	 named	 table	 expressions	 which	 gives	 the	 flexibility	 for	 a	
single	query	to	retrieve	data	from	one	(or	more)	data	store,	perform	transformations	on	
it	and	then	use	it	to	update	another	data	store.	A	single	MdbQL	command	can	perform	
data	manipulation	against	 several	data	 stores.	 In	order	 to	guarantee	ACID	consistency	
the	 common	 query	 engine	 is	 also	 integrated	 into	 the	 holistic	 transactional	 support,	
providing	all‐or‐nothing	semantics	for	updates	across	multiple	data	stores.	
	
The	 common	 query	 engine	 is	 integrated	 with	 the	 data	 stores	 by	 means	 of	 a	
mediator/wrapper	 architectural	model.	Wrappers	 transform	 queries	 expressed	 in	 the	
common	query	 language	 into	 native	 queries	 of	 the	 data	 store,	 and	 also	 transform	 the	
result	 sets	 of	 queries	 into	 results	 of	 the	 common	 data	model.	Wrappers	 also	 provide	
information	about	the	data	store	schemas.	The	mediator	transforms	queries	expressed	
in	 the	 common	 language	 into	 queries	 for	 the	 wrappers	 and	 integrates	 the	 wrapper	
queries’	results.	The	mediator	also	centralizes	the	information	provided	by	wrappers	in	
a	global	schema.	The	interface	between	the	common	query	engine	and	the	data	stores	if	
through	the	wrappers.	
	
The	 common	 query	 engine	 is	 integrated	 with	 the	 holistic	 transactions	 as	 any	 other	
CoherentPaaS	data	 store.	The	main	difference	between	 the	common	query	engine	and	
the	rest	of	the	data	stores	is	that	the	common	query	engine	itself	does	not	store	data	and	
acts	as	a	kind	of	delegated	transactional	manager	with	respect	to	holistic	transactions.		
	

3.3. X‐Ray Monitoring
The	 X‐Ray	 monitoring	 subsystem	 provides	 a	 fine‐grained	 analysis	 and	 real‐time	
monitoring	 of	 applications	 deployed	 on	 CoherentPaaS.	 This	 subsystem	will	 enable	 to	
transparently	instrument	cloud	applications	to	perform	a	detailed	analysis	of	the	cost	of	
each	request	performed	by	the	application.	This	detailed	analysis	will	include	a	detailed	
analysis	of	where	the	time	is	spent	within	the	cloud	application.	But	it	will	also	include	a	
detailed	analysis	of	 the	cost	of	each	query	performed	against	any	of	 the	CoherentPaaS	

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page	12/15

	

	 	

data	 stores.	 This	 support	will	 provide	 an	 invaluable	 tool	 to	 CoherentPaaS	 application	
developers	enabling	developers	to	tune	and	improve	the	performance	of	applications.	X‐
Ray	will	also	be	crucial	 to	enable	database	administrators	 to	 tune	 the	configuration	of	
each	 of	 the	 CoherentPaaS	 data	 stores	 and	 measure	 in	 a	 very	 detailed	 manner	 the	
performance	 impact	of	each	configuration	change.	The	profile	 information	will	 include	
detailed	information	about	the	query	cost,	selectivity,	number	of	updates,	transactional	
cost,	etc.	

The	integration	of	the	X‐Ray	monitoring	subsystem	with	the	CoherentPaaS	data	stores	is	
performed	 via	 agents	 that	 collect	 performance	 metrics	 and	 detailed	 cost	 information	
from	 the	 data	 stores.	 The	 agents	 also	 collect	 resources	 usage	 metrics	 from	 the	
underlying	operating	system/hypervisor	via	the	sigar	library	[Sigar].	
	

3.4. Data Stores and CEP
One	of	the	core	components	of	CoherentPaaS	architecture	are	the	cloud	data	stores	and	
CEP	 system.	Two	kinds	 of	 data	 stores	 are	 dealt	with:	 SQL‐like	 data	 stores	 and	NoSQL	
data	 stores.	 Among	 the	 SQL‐like	 data	 stores	 there	 is	 a	 SQL	database,	 providing	 a	 SQL	
OLTP	 engine	 (the	 SQL	 query	 engine	 has	 been	 extracted	 from	 Derby	 DB	 [Derby]),	 a	
column‐oriented	 SQL	 data	 store,	MonetDB	 [MonetDB]	 and,	 an	 in‐memory	MDX	 active	
database,	ActivePivot	 [ActivePivot].	On	 the	NoSQL	side	another	 three	 technologies	are	
supported:	 a	 graph	 database,	 DEX	 [DEX],	 a	 document‐oriented	 data	 store,	 MongoDB	
[MongoDB]	and,	a	key‐value	data	store,	HBase	[HBase].	Finally,	as	CEP	technology	to	be	
integrated	into	CoherentPaaS,	Storm	[Storm]	has	been	selected.		
	
Data	 stores	 are	 integrated	 with	 the	 cloud	 application	 via	 their	 proxy	 clients.	 For	
instance,	the	client	proxy	of	the	Derby	SQL	database	is	a	JDBC	driver.	For	HBase,	there	is	
an	HBase	 client	proxy.	 	 It	 is	worth	noting,	 that	 the	 common	query	 engine	 also	has	 its	
client	proxy.	This	proxy	acts	as	any	other	data	store	proxy	for	the	application.	Again,	it	is	
a	special	data	store	since	it	does	not	contain	data	itself	but	enables	to	access	other	data	
stores.	
	
CEP	is	a	special	case.	The	CEP	does	not	store	persistent	data.	Also	CEP	queries	are	very	
different	 in	nature	since	 they	are	continuous,	while	 for	persistent	data	stores	 they	are	
point	in	time	queries.	This	means	that	there	is	a	big	impedance	mismatch	between	both	
kinds	of	technologies.	Solving	this	impedance	mismatch	is	another	of	the	challenges	that	
CoherentPaaS	aims	to	solve.	CoherentPaaS		provides	a	bi‐directional	integration.	On	one	
hand,	CEP	queries	may	access	the	persistent	data	stores,	and	on	the	other	hand	we	want	
to	 enable	 applications	 to	use	 the	output	of	CEP	queries	 in	 the	 same	way	as	 any	other	
data	store.	The	CEP	queries	will	be	able	 to	access	 the	persistent	data	stores	via	a	new	
kind	of	CEP	data	operators	that	will	enable	to	correlate	events	with	the	persistent	data	
stores	 via	 the	 common	 query	 engine.	 CoherentPaaS	 cloud	 applications	will	 be	 able	 to	
access	the	output	of	CEP	queries	without	having	to	use	the	CEP	API,	thanks	to	the	CEP	
materialization	operators	 that	 allow	materializing	 the	output	of	 a	CEP	query	as	 a	 SQL	
table	that	can	be	accessed	by	applications	as	any	other	SQL	table.	
	
The	CEP	is	integrated	with	the	holistic	transactions	in	a	peculiar	way	due	to	the	lack	of	
explicit	 transaction	 bracketing.	 On	 one	 hand,	 events	 are	 guaranteed	 to	 observe	 a	
consistent	 snapshot	 as	 they	 are	 transformed	 through	 a	 CEP	 query.	 This	 consistency	
guarantees	 that	 an	 event	will	 observe	 the	 same	 snapshot	 along	 the	whole	 CEP	 query.	

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page	13/15

	

	 	

Also	 batches	 of	 events	will	 be	 dealt	 transactionally	when	 they	 update	 persistent	 data	
stores	or	when	they	are	materialized	at	the	output	of	a	CEP	query.	
	

3.5. PaaS Manager
The	PaaS	manager	provides	a	centralized	management	for	the	whole	platform.	It	enables	
to	make	deployments	of	the	platform	in	an	automated	manner.	It	provides	a	dashboard	
that	provides	monitoring	 information	of	 the	deployment	and	 that	 it	 is	 connected	with	
the	 x‐ray	 monitoring	 system	 to	 provide	 detailed	 profiling	 information	 of	 deployed	
applications.	 It	 also	 provides	 a	 console	 that	 enables	 to	 administer	 all	 the	 deployed	
subsystems	 in	 a	 particular	 deployment.	 It	 also	 provides	 holistic	 elastic	 management	
decisions	 for	 those	 subsystems	 that	 delegate	 the	 elasticity	 management	 support,	 a	
subset	 of	 all	 the	data	 stores	 technologies,	 namely,	Derby,	HBase	 and	 the	 transactional	
subsystems.	

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page	14/15

	

	 	

4. References
[ActivePivot]	http://quartetfs.com/en/products/activepivot/high‐performance‐
analytics	
[Berenson95]	Hal	Berenson,	Philip	A.	Bernstein,	Jim	Gray,	Jim	Melton,	Elizabeth	J.	O'Neil,	
Patrick	E.	O'Neil:	A	Critique	of	ANSI	SQL	Isolation	Levels.	SIGMOD	Conference	1995:	1‐
10.	
[Derby]	http://db.apache.org/derby/	
[DEX]	http://www.sparsity‐technologies.com	
[HBase]	https://hbase.apache.org	
[MonetDB]	http://	https://www.monetdb.org	
[MongoDB]	https://www.mongodb.org	
[Sigar]	http://www.hyperic.com/products/sigar	
[Storm]	http://storm.incubator.apache.org	

