

CoherentPaaS
Coherent and Rich PaaS with a

Common Programming Model

ICT FP7-611068

Architecture of
the Query
Engine for the
Common Query
Language

D3.2

October, 2014

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 1/58

Document Information
Scheduled delivery 30.09.2014
Actual delivery 24.10.2014
Version 1.0
Responsible Partner INRIA

Dissemination Level:
PU Public
PP Restricted to other programme participants (including the Commission)
RE Restricted to a group specified by the consortium (including the Commission)
CO Confidential, only for members of the consortium (including the Commission)

Revision History
Date Editor Status Version Changes
22.09.2014 N. Martínez Draft 0.1 Skeleton
07.10.2014 D. Dominguez Draft 0.2 Query engine contents
07.10.2014 B. Kolev Draft 0.2 Query compiler contents
07.10.2014 J. Orlando Draft 0.2 Wrapper contents
13.10.2014 D. Dominguez Draft 0.3 First full draft
14.10.2014 J. Orlando

D. Dominguez
B. Kolev

Draft 0.4 Review and minor editions

15.10.2014 D Dominguez Draft 0.5 Draft to reviewers
16.10.2014 M. Kersten

L. Cortesão
 0.6 Review

21.10.2014 D. Dominguez
J. Orlando
B. Kolev

Draft 0.7 Updates from first review

22.10.2014 J. Orlando
B. Kolev

Draft 0.8 Minor editions

24.10.2014 R. Jimenez Final 1.0 Final coordinator revision

Contributors
Boyan Kolev (INRIA), Norbert Martínez (Sparsity), David Domínguez (Sparsity), Ricard
Gavaldà (UPC), Marta Perez (UPC), Josep Lluis Larriba, (Sparsity), Jose Orlando Pereira
(INESC)

Internal Reviewers
Martin Kersten (MonetDB Solutions), Luis Cortesão (PTIN)

Acknowledgements
Research partially funded by EC 7th Framework Programme FP7/2007-2013 under
grant agreement n° 611068.

More information
Additional information and public deliverables of CoherentPaaS can be found at: http://
coherentpaas.eu

http://coherentpaas.eu/
http://coherentpaas.eu/

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 2/58

Glossary of Acronyms

Acronym Definition
CloudMds Cloud Multi-data store
CQA CloudMds Query Algebra
CQE CloudMds Query Engine
JDBC Java Database Connectivity

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 3/58

Table of Contents
1. Executive Summary .. 5

2. CloudMds Query Engine Architecture ... 7

2.1. Query Engine Execution Flow .. 10

2.1.1. Startup .. 10

2.1.2. Shutdown .. 11

2.1.3. Query compilation ... 11

2.1.4. Query execution .. 12

2.1.5. Create and destroy instances of the distributed query engine......................... 13

2.2. Table Store ... 13

2.3. Query Engine Client: JDBC ... 15

3. Query Compiler Architecture ... 17

3.1. Query Decomposition .. 17

3.2. Query Optimization .. 18

3.3. Sub-querying SQL Compatible NoSQL Data Stores .. 19

3.4. SQL Capabilities ... 20

4. Query Operator Engine Architecture .. 22

4.1. Parser ... 23

4.2. Dependency Graphs.. 24

4.3. Fan-out Analysis .. 24

4.4. Preparer and Query Schemas ... 24

4.5. Optimizers .. 25

4.6. Processor .. 25

4.7. CQA Programming Interface ... 26

4.7.1. Query ... 26

4.7.2. Streams ... 28

4.7.3. QueryContext ... 30

4.8. CQA programs ... 30

4.8.1. Comments ... 30

4.8.2. Reserved Words .. 31

4.8.3. Identifiers .. 31

4.8.4. Values .. 31

4.8.5. Expressions ... 33

4.8.6. CQA Queries .. 34

4.9. CQA operators ... 35

4.9.1. Basic Operations ... 35

4.9.2. Data Operations .. 39

4.10. Parsing CloudMdsQL query plans to CQA query plans ... 43

5. Wrappers: Query Engine interaction with the Data Stores .. 47

5.1. Rationale ... 47

5.2. Wrapper architecture and interfaces .. 47

5.2.1. eu.coherentpaas.cqe.datastore ... 48

5.2.2. eu.coherentpaas.cqe .. 49

5.2.3. eu.coherentpaas.cqe.plan .. 49

5.2.4. eu.coherentpaas.cqe.sqlgen.. 49

5.3. Common wrapper implementations .. 49

5.3.1. Native query, client-side execution ... 49

5.3.2. Native query, server-side execution ... 50

5.3.3. Transform query, custom interface .. 50

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 4/58

5.3.4. Transform query, SQL interface ... 50

5.4. Operation .. 51

5.4.1. Startup and shutdown .. 51

5.4.2. Connections and statements .. 51

5.4.3. Named tables and parameters .. 52

6. References ... 53

Appendix A. Query Plan JSON Schema ... 54

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 5/58

1. Executive Summary

Providing massive data processing capabilities in the cloud is a major trend in the design
of data management solutions deployed on the cloud. The experience of the latest years
is that no single data management system is the silver bullet for data processing, where
all the data needs can be mapped. Currently, companies are using a variety of data
solutions ranging from relational databases to NoSQL data stores, which come in
multiple flavors such as graph databases, key-value data stores, array data stores,
analytical cloud frameworks, document databases, data stream systems, etc.
CoherentPaaS provides a software infrastructure to allow efficient and easy to program
communication among this multitude of data management systems. In this deliverable,
we describe the architecture of the query engine that interconnects the data stores.

The query engine is central piece that coordinates the execution of queries in
CoherentPaaS. This module executes queries in the CloudMdsQL language (see D3.1),
which defines a syntax to mix the operations among the data repositories. The data in
the query engine is modeled as tabular data: sets of tuples with a fixed number of
attributes. This model is simple enough to allow importation and exportation of data
from NoSQL data representations.

Clients connecting to the CoherentPaaS infrastructure will have the impression that all
systems act as a single database. In order to provide such a feeling from the client
perspective, we will provide a JDBC connector for the CoherentPaaS infrastructure of
CoherentPaaS. JDBC is one of the standard methods to connect to a database system, and
thus clients will connect to the database like a regular database system. However, user
queries will be able to take full advantage of the different repositories in the
CoherentPaaS infrastructure by introducing SQL and NoSQL statements.

This deliverable contains the description of the architecture of the query engine for the
common query language and its interaction with the data stores. In the next year of the
project, we will implement this architecture and build the prototype for the query
engine and compiler. This deliverable is structured as follows:

 In Section 2, we describe the global query engine architecture. The global Query
Mediator performs all the coordination activities among the modules and is the
central block of the CoherentPaaS architecture. The Query Engine is able to
compute queries by forwarding them to the Data Stores, and also by combining
results using the Operator Engine. The Operator Engine is able to execute
programs that combine CloudMds Query Algebra (CQA) operators in a query
plan. The Query Engine has also a module, called Table Store, which saves the
tabular results of queries into tables. The tables contain either the query results
or temporary results that will be further processed by the Operator Engine or any
of the data stores in the CoherentPaaS ecosystem. We select one of the database
providers of the consortium, MonetDB, as the storage of the Table Store.

 In Section 3, we explain the query compiler architecture. This module performs
the compilation of the queries. The compilation process starts with the syntactic
and semantic validation of a given query, and then performs a sequential set of
optimization procedures that rewrite the user query to equivalent statements
that are faster to compute. The query plan is finally converted to CQA operations

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 6/58

that will control the execution flow of the data between the Data Stores and the
Operator Engine.

 In Section 4, we describe the architecture of the Operator Engine and the set of
operations that will be implemented in the project. The Operator Engine
implements a set of operations that build CQA programs. These operations
process and combine the results provided by the different data stores.

 In Section 5, we describe the communication interface of the query engine with
the data store by means of a wrapper infrastructure. This interface is
implemented using a single API, which unify the interaction between the Query
Mediator and the data stores. Using this approach, we ensure that data providers
not part of the CoherentPaaS project can attach their database to the
CoherentPaaS platform by only implementing the wrapper interface. In this
section, we discuss the calls to the interface and the logic that the data store
provider must implement.

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 7/58

2. CloudMds Query Engine Architecture

The Cloud multi-data store Query Engine of CoherentPaaS will be integrated with a very
scalable transactional processing system that provides full ACID transactions over
arbitrary sets of cloud data stores. CoherentPaaS will use a mediator/wrapper
architecture. The Query Mediator is the component that performs communication
between the clients that implement the user functionalities, and the set of database
engines in CoherentPaaS. We depict a schema of the modules:

The main modules of the query engine are the following:

 JDBC client: Interfaces to provide access to the database architecture.
 Query compiler & optimizer: Module that transforms a CloudMdsQL query to the

CQA algebra language. The optimizer will perform a set of processes that rewrite
the original query to an equivalent query in CloudMdsQL language with a smaller
expected execution time.

 Query Mediator: Controller class that coordinates the client communication,
query compilation, execution of query operators and access to databases of
CoherentPaaS. The query mediator will contain an instance of the local
transaction manager that will act as a proxy for the holistic transaction manager.

 Table Store: Storage of temporary results of the queries.
 Operator Engine: component that implements relational operators in order to

combine and process the results of the data stores and the Table Store.

QUERY ENGINE

Query
mediator

Operator
Engine

JDBC
client

Wrapper
DB1

DB1 Query
compiler &
optimizer

Wrapper
DBN

DBN

… …

Table Store
Connector

User
Application

Table
Store

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 8/58

 DBi: database provider available in the CoherentPaaS platform. This includes both
relational and NoSQL data repositories.

 Wrappers: interfaces that perform the connection between the Query Mediator
and the database storages.

The first implementation of the query engine will be single instance. However, for
scalability purposes, the query engine will be extended to a scalable system in the cloud.
The architecture will replicate the query engine in multiple computing instances, in
which each instance has all the capabilities to run a query. These instances will not share
resources, but will access to any of the data stores available in the cloud. The access to
these data stores will keep a strong coherence with the synchronization provided by the
holistic transaction manager.

A load balancer will redirect the incoming new client queries to the query engine
instance that is less loaded at that moment. Once a query has been compiled in an
instance of the query engine, the user application will send the query to that query
engine. After the evaluation of the first prototype, we will evaluate if it is necessary to
apply a dynamic load balancing policy that allows queries to relocate among the query
engines once they are compiled. The instances of the query engine will execute incoming
queries as described for the case of the single query engine. The query engine instances
will connect to the shared pool of databases through the corresponding data store
connectors.

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 9/58

QUERY ENGINE N

Query
Mediator

Operator

JDBC

Wrapper

Compiler

Wrapper

…

Table Store
connector

QUERY ENGINE 1

Query
Mediator

Operator

JDBC

Wrapper

Compiler

Wrapper

…

Table Store
connector DB1

DBN

…

User
Application

…

Load
balancer

QUERY ENGINE 2

Query
Mediator

Operator

JDBC

Wrapper

Compiler

Wrapper

…

Table Store
connector

User
Application User

Application

Table
Store

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 10/58

2.1. Query Engine Execution Flow
We describe the main execution flow of the query engine.

2.1.1. Startup

The startup procedure initializes the Table Store that will be used for that instance of the
query engine, initializes the transaction manager and all databases available. The
startup procedure will be used when no more instances of the query engine are already
running.

Initialization
completed

Startup

Initialize Query
Mediator

Initialize holistic
transaction manager

Create Table Store
instance

Register and
initialize DBi

More DB?

Yes

No

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 11/58

2.1.2. Shutdown

The shutdown procedure stops the arrival of new queries to the system and initiates the
shutdown process. This process aborts pending queries, notifies all data stores about the
shutdown and closes the Table Store.

2.1.3. Query compilation

User code requests a PreparedStatement on the JDBC driver. This request is forwarded
to the query compiler through the Query Mediator. The query compilation procedure
optimizes and transforms the user query into a prepared statement that is ready to be
executed.

Shutdown
completed

Shutdown start

Stop new JDBC
connections

Abort ongoing
transactions

Notify DBs query
engine closing

Remove Table Store
contents

Prepared statement
ready

Compile query

JDBC receives prepared
statement request

Query mediator sends
to compiler

Code to code
Optimization

Compilation to CQA

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 12/58

2.1.4. Query execution

Client code starts a new query. The mediator retrieves the CQA precompiled query and
interprets each operation: it checks the database engine that will perform the sub-query
and forwards the operation to it.

Query executed

Execute compiled
PreparedStatement

JDBC requests
PreparedStatement execution

prepared statement

Query mediator retrieves CQA
query plan

Next
Operation?

Execute at Operator
Engine

Execute operation at
DBi

Table Store access

Table Store
operation DB Operation

Query engine
operator

More
operations?

Save result in Table
Store

Return ResultSet to
the client

Yes

No

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 13/58

2.1.5. Create and destroy instances of the distributed query engine

The query engine may have multiple replicas for scalability purposes as described in
Section 2. In this mode of operation, the instances of the query engine follow a slightly
modified version of the initialization and shutdown process when they are created or
destroyed. The difference is that the table store is neither created nor destroyed by each
individual instance, because the table store is shared among all instances. Even if an
instance of the query engine is removed, the contents of the table store should remain
visible for the other instances. Therefore, only the initialization of the first instance of
the query engine creates the table store, and only the last one removes the contents of
the table store.

2.2. Table Store
The query engine follows a stream model of operations, where the last operator pulls
results from the previous one. The Table Store is the component that is used by the
query engine to provide persistence to some temporal results and final results of the
queries. Blocking operators that need to store large datasets will use the Table Store as
the repository to save partial data. Temporal results may need to be consumed by
multiple operators, which run at different speeds. When the fan-out operator (see
Section 4.3) detects that the cache is not enough to deal with the operator speed
mismatch, it starts storing the incoming elements in a temporary private table of the
Table Store. Furthermore, final results that will remain accessible by name will also be
materialized in the Table Store.

We define several requirements for the Table Store:

1. Store tabular data efficiently: the query engine represents all the data as tables. It
is necessary that the Table Store represents the data as tuples and attributes in
order to reduce the schema mismatch between the Table Store and the Operator
Engine.

2. Storage of named tables: the Table Store needs to store multiple tables
simultaneously and identify these tables by name.

3. Management of arbitrarily large data sets: queries among databases of the
CoherentPaaS infrastructure may retrieve arbitrarily large datasets. Therefore, it
is necessary that the Table Store has out of core capabilities to keep result sets
that are larger than the memory available.

4. Easy access to data for the wrappers: each data provider in the project will be
able to access the contents of the Table Store from its wrapper. Therefore, it is
necessary that the Table Store provides easy interfaces to access the data.

We select MonetDB database as the storage of the Table Store. MonetDB fulfills the
previously stated requirements as follows. First, it is a relational database management
system and thus it is able to represent tabular datasets natively. Furthermore, MonetDB
is a database that has shown excellent performance in benchmark evaluations due to its
column store model and its implementation adapted to modern multicore CPUs. Second
MonetDB allows the identification of the datasets by storing them in different tables
using the relational model. Third, MonetDB offers an out of core functionality that is able
to store large datasets and compress them on disk when the data does not fit in memory.
Fourth, MonetDB has a fully compatible JDBC driver and an excellent integration with

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 14/58

Java, which is the implementation language of the Query Mediator. Therefore, MonetDB
seems an adequate backend for the Table Store.

The Data Store operations provide a temporary storage where tables can be stored to be
reused later by the current query or by others. Stored tables can be TEMPORARY only
for the current session, or GLOBAL to be available for all sessions. Temporary tables are
automatically destroyed when the session is finished, and global tables are removed by a
drop command or when the engine is shutdown. In the following sections, we describe
the operations to store and retrieve named tables from the Table Store.

2.2.1.1. SAVE(<source>, <name>, <options>)

It stores the result of a query operator as a table expression. The operator will pull rows
from the source until it has produced all the results. The new table will be identified by
the name given as the second parameter. The options parameter contains flags that
modify the persistence of the table.

Input:

 source - stores a table with a given name.

 name - name of the table

 options - optional property map with the options for the operator engine.
o replace: TRUE to replace another table with the same name. When

FALSE(default), it raises an error if the name already exists.
o scope: GLOBAL or TEMPORARY (default)

Output:
If completed successfully, it returns a non empty table with one column and one row
that indicates the number of rows stored. Otherwise, returns an empty table.

Examples:
SAVE(VALUES([INT],[[3],[2]]),’example’,{‘replace’=TRUE})

COL_1

2

2.2.1.2. LOAD(<name>)

Retrieves an stored table

Input:

 Name – name of the table

Output:
The contents of the stored table.

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 15/58

Examples:
LOAD(’example’)

COL_1

3

2

2.2.1.3. DROP(<name>)

Deletes a stored table.

Input:

 Name – name of the table

Output:
If completed successfully, it returns a non empty table with one column and one row
with a value 1. Otherwise, returns a table which contains a 0.

Examples:
DROP(‘example’)

COL_1

1

2.3. Query Engine Client: JDBC
From the perspective of a client that connects to the CoherentPaaS infrastructure, the
query engine will be seen as a database. Therefore, we decided to implement the
interaction between the clients and the query engine as a JDBC connection, which is one
of the most popular database connection standards.

JDBC interface is part of the standard SDK and does not need to include additional
libraries. We will create an implementation of the interfaces provided by java 1.7 SDK.
We will implement the following interfaces:

 Connection: creates a connection between the client and the query engine.
 PreparedStatement: issues queries written in CloudMdsQL to the query engine.

These queries will be compiled and later executed.
 ResultSet: provides a table like interface to retrieve the results from

CoherentPaaS.

The choice of JDBC has several advantages that will facilitate the adoption of
CoherentPaaS and an easy access, which will turn into a larger impact of the technology:

 Standardized access method: JDBC is part of the standard SDK, and thus it makes
installation and testing easy. Additionally, database programmers are familiar to
JDBC interfaces and can start using the CoherentPaaS infrastructure without
learning a new database interface.

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 16/58

 Access from multiple environments: Java is a multiplatform language and
implementations of the Java Virtual Machine run in almost any computing device:
mobile phones, desktop stations and supercomputers. Furthermore, Java
provides the Java Native Interface (JNI) that gives access to Java classes for any
other language. Therefore, the CoherentPaaS infrastructure will be accessible to
virtually any system.

 Reusability of older code: There is a large set of existing software applications
that use JDBC interfaces to access the data. Since we will implement these
interfaces, the adaptation of old code to CoherentPaaS will be easy because all the
software logic can be kept. Programmers adapting old code will only need to
update the queries issued to the database in order to take advantage of the
CoherentPaaS cloud database

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 17/58

3. Query Compiler Architecture
The query compiler parses a CloudMdsQL query and generates a query execution plan
that is executed by the query engine. It uses the Boost.Spirit framework for parsing
context-free grammars, following the recursive descent approach. The compiler uses
named table expression signatures or may query a catalog to retrieve metadata
information necessary for semantic analysis. The execution plan is then delivered to the
query processor in the form of a JSON document that contains a query execution tree
with sufficient information to configure and run efficiently each of the query operations.
The common JSON schema (according to draft 4 of http://json-schema.org) describing
the format of a CloudMdsQL execution plan is provided in Appendix A. A valid execution
plan must be able to be validated against this schema.

3.1. Query Decomposition
During query decomposition, the compiler builds the execution plan, which in its
simplest form is a tree structure, where each non-leaf node represents a relational
operation, and each leaf node represents a sub-query against a data store. At this stage,
the compiler also prepares a set of native queries which will be passed to the
corresponding wrappers and hence to the underlying data stores (this process will be
explained later). Each node of the query plan tree represents a relational operation and
an intermediate relation, result from the operation. Since the language allows the
definition of named table expressions, which can be used as operands to several
operations, it is possible that an intermediate relation is the input of more than one
relational operator, therefore the query plan appears to be a graph rather than a tree
structure.

While building the execution strategy, the compiler identifies a forest of sub-trees within
the query plan, each of which is associated to a certain data store. Each of these sub-
trees is meant to be delivered to the corresponding wrapper, who has to translate it to a
native query and execute it against the data store. The rest of the query execution plan is
the part that will be handled by the common query engine. Hence, we now outline two
main subsets of the global execution plan:

 a forest of sub-trees that will be executed locally by each data store and
 a common query plan that will be executed by the common query engine, with

leaf nodes consuming the relations returned by each wrapper as result of sub-
tree execution.

At query decomposition stage, the boundary between the two subsets is preliminary and
may be modified during the query optimization stage the following ways:

 the compiler may push selection operations from the common plan to sub-trees,
in order to filter out as much data as possible before the query engine retrieves it,
thus saving communication costs and improving the overall efficiency;

 the compiler may pull operations from sub-trees to the common plan if the
corresponding data stores are not capable of performing them (see section 3.4).

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 18/58

3.2. Query Optimization
Due to the lack of global catalog and database statistics and because of the usage of
native sub-queries that are considered as black boxes (and therefore cannot be
analyzed), the capability of query engine to perform cost-based optimization is limited.
Although some data stores can provide cost estimation of a particular sub-query, there
are still many cases, for which the sub-queries are expressed in languages that cannot be
subject to analysis, e.g. embedded Python code that invokes data store’s API. For this
reason, CloudMdsQL language gives its programmers possibility to specify execution
directives by writing explicit join ordering and even explicitly specifying the join method
to use. The compiler considers all explicitly specified JOIN…ON constructs in the FROM
clause and thus identifies sub-trees from the common query plan that are considered
atomic, i.e. not subject to join reordering. Besides taking into account explicit directives,
the query optimizer always pushes selection operations down the query tree as much as
possible, which may result in rewriting data store sub-queries by adding filter
conditions.

To reduce the communication cost between data stores and the query engine, the latter
can benefit from the usage of bind joins, which are efficient join operations between
relations, retrieved from different data stores, processed following this approach: the
left-hand side relation is retrieved, during which the tuples are stored in an intermediate
storage and the distinct values of the join attribute(s) are kept in a list of values, which
will be passed as a filter to the right-hand side sub-query. As an example, let us consider
the following CloudMdsQL fragment:

SELECT a.x, b.y FROM b JOIN (BIND) a ON b.id = a.id

The execution directive (BIND) following the JOIN keyword means that join condition
will be bound to the right-hand side of the join operation. First, the relation B is
retrieved from the corresponding data store using its query mechanism. Then, the
distinct values of B.id are used as a filter condition in the query that retrieves the
relation A from its data store. Assuming that the distinct values of B.id are b1 … bn,
the query to retrieve the right-hand side relation of the bind join uses the following SQL
approach (or its equivalent according to the data store’s query language):

SELECT a.id, a.x FROM a WHERE a.id IN (b1, …, bn)

Thus, only the rows from A that match the join criteria are retrieved. In order to perform
this operation, the final sub-query to retrieve relation A must be composed by the query
engine during runtime. Therefore, for each right-hand side of a bind join, the query
compiler prepares an “almost ready” native query sentence, with placeholders for
including the bind join condition, which will be added later by the query engine during
runtime.

Whenever join ordering is not explicitly specified by execution directives, to generate a
fairly efficient query execution plan at global level, the query optimizer may follow a
best-effort approach according to the availability of local cost information that,
whenever possible, should be provided by the wrappers. We introduce several
approaches that can be adopted for the purpose. Each wrapper implementation may
consider the cost-estimating capability of its data store in order to provide an efficient
mechanism to perform cost estimation of sub-queries. Any of the described below

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 19/58

methods can be used for the purpose, depending on the features provided by the data
store:

 If the data store can efficiently estimate the cost of a sub-query and the size of its
result set (like EXPLAIN on prepared statements), the query engine may benefit
from this to directly estimate the cost of a sub-query.

 In other cases, the wrapper implementation can make use of available database
statistics (like cardinalities, number of distinct values per column, etc.) and
metadata information (like the availability and types of indexes) in order to
provide cost and selectivity functions to support the global optimization task.

 If none of the above methods are applicable, but the data store can process
aggregate queries like COUNT(*), MIN and MAX, the wrapper can periodically run
in background such queries, thus synthesizing and keeping statistics like the
number of tuples in a table or the min/max values of an attribute.

However, the lack of cost models in some NoSQL data stores and the limited (or lack of)
capability to build database statistics do not allow for defining a precise global cost
model for query optimization. Therefore, the solution to the optimization problem has to
deal with incomplete cost information following approaches involving heuristics,
dynamic query optimization and user-defined cost and selectivity functions.

Sub-query rewriting can be planned by the optimizer in several occasions:

 selection pushdowns which result in pushing filter conditions from the common
plan to sub-trees;

 usage of bind joins which implies adding filter conditions to the sub-query in
order to allow the retrieval of only those tuples that match the join criteria;

 taking advantage of sort-merge joins which requires adding sorting operations to
sub-queries in order to guarantee that the retrieved relations are sorted by their
join attributes.

The first rewriting approach is considered always efficient, i.e. whenever the data store
is capable of handling it, the optimizer will plan selection pushdown. However, bind
joins or merge joins will be planned either if explicitly specified by CloudMdsQL
directives or as a result of optimization decision, of course taking into account data
store’s capabilities as well.

3.3. Sub-querying SQL Compatible NoSQL Data Stores
Since the data model of some NoSQL data stores (e.g. key-value or document databases)
can be considered as a subset of the relational model, in most cases it is possible to map
simple SQL commands to native queries, without compromising the functionality. In fact,
SQL-like languages are already commonly used with data stores based on the BigTable
data model, e.g. CQL for Cassandra. For such data stores, the recommended approach for
sub-querying within CloudMdsQL is to use SQL table expressions against the data store,
even though the data store does not natively support SQL. Whenever an SQL table
expression is used as a nested query against a data store, it is considered as a sub-select
statement and hence is transformed into a sub-tree in the query execution plan. Thus,
each SQL table expression can be subject to further transformations and may be
rewritten by the optimizer before submitted for execution to the data store. This allows
the CloudMdsQL engine to perform optimizations of the global query execution plan
(like pushing selections, projections and join operations down the tree as much as
possible) or take advantage of bind joins, etc. Each sub-tree is then delivered to the

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 20/58

corresponding wrapper, which interprets and transforms it to a native query, in order to
execute it against the data store using its native query mechanism.

3.4. SQL Capabilities
In order to build executable sub-query plans, the query engine must be aware of the
capabilities of the corresponding data store, to perform operations supported by the
common data model. Therefore, the wrapper implementer must identify the subset of
the common algebra that is supported by the data store. Thus, the query planner can
decide on which parts of the global query plan can be handled locally by the data stores
and which part should remain in the common query plan (see Section 3.1). For example,
a MongoDB data store can perform selection operations – analogous to the document
collection method find() – but is not able to perform joins. Being aware of that, the query
planner can push selection operations down to the sub-query plan, but will assign any
join operation between MongoDB document collections to the common query plan.

The method to handle data source capabilities, proposed in [Tomasic98], requires that
the query engine serializes the sub-query plan (or single operations from it) to a
sentence of a specific language, that should be matched against a pattern, provided by
the corresponding wrapper – if the validation succeeds, then the data store is capable of
executing the sub-query. Thus the query planner can determine the boundary between
the common query plan and the sub-plan that will be handled by the data store.

In CloudMdsQL a similar approach is proposed which makes use of JSON schemas as an
instrument for the wrapper to express its data store’s capabilities. To test the
executability of a sub-plan (or a single operation) against a data store, the query planner
serializes it to a JSON document that has to be validated against the JSON schema
exposed by the wrapper. Below is an example of a capability JSON schema for a key-
value data store, that is capable only of performing selection operations involving
comparisons on the ‘key’ attribute (only certain elements of the schema object are
shown):

{

 "properties": {

 "op": { "type": "string", "pattern": "SELECT" },

 "tableref": { "type": "string" },

 "filter": { "$ref": "#/definitions/expression" }

 },

 "definitions": {

 "expression": { "oneOf": [

 { "$ref": "#/definitions/comparison" },

 { "$ref": "#/definitions/function" }

] },

 "comparison": { "properties": {

 "comp": { "type": "string", "pattern": "=|<|>|<=|>=|<>" },

 "lhs": { "properties": {

 "colref": { "type": "string", "pattern": "key" },

 },

 "rhs": { "type": "string" }

 } },

 "function": { "properties": {

 "func": { "type": "string", "pattern": "AND|OR" },

 "lhs": { "$ref": "#/definitions/expression" },

 "rhs": { "$ref": "#/definitions/expression" }

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 21/58

 } }

 }

}

Now let us consider the following sub-query that is composed of two conjunctive
selection conditions, each of which is tested against the capability specification. The
result of the validation shows that condition #1 can be handled by a selection operation
in the key-value data store and therefore it will be left in the sub-query, while condition
#2 doesn’t pass the validation, and therefore will be pulled up in the common plan to be
processed by to common query engine.

SELECT key, value FROM tbl WHERE key BETWEEN 10 AND 20 AND value > key

Condition #1: key BETWEEN 10 AND 20
Validation: success

Condition #2: value > key
Validation: failure

{

 "op": "SELECT",

 "tableref": "tbl",

 "filter": {

 "func": "AND",

 "lhs": { "comp": ">=",

 "lhs": {"colref": "key"},

 "rhs": "10" },

 "rhs": { "comp": "<=",

 "lhs": {"colref": "key"},

 "rhs": "20" }

 }

}

{

 "op": "SELECT",

 "tableref": "tbl",

 "filter": {

 "comp": ">",

 "lhs": {"colref": "value"},

 "rhs": {"colref": "key"}

 }

}

Generally, for each data store it is important to identify the intersection of the set of its
supported operators and the set of CloudMdsQL operators. Therefore, a common
procedure is, for each wrapper implementer, to outline a subset of the common JSON
schema (see Appendix A) in order to prepare the capabilities schema for its data store.

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 22/58

4. Query Operator Engine Architecture

The query operator engine is the component that combines the results from the data
stores by performing classical relational operations (selection, join, grouping, etc.). The
operators will be implemented following an iterator (Volcano-like) model [Graefe94]
with highly efficient operators optimized for SMP architectures, taking advantage of the
multiple cores and threads available, and being conscious of the different memory cache
levels.

Each of the query operators receive one or more cursors of tabular data and optionally
some configuration parameters such as filter conditions, sorting order, etc. Each cursor
contains one or more columns of data, where each column is restricted to a single data
type of a fixed length binary representation (e.g. integer, double precision or
timestamp), or a fixed length offset to a dictionary of variable length values such as
UNICODE strings. Thus, chunks of data can be efficiently managed as a vector of fixed
length values by taking advantage of SIMD instructions as presented in [Boncz05].
Columns are also split into chunks of data of a small size, usually a multiple of the
operating system page size (a few Kbytes).

The iterator model processes the query from top to bottom: at each step one chunk of
data for each column is provided to a consumer operator. Pipelined chunks are never
modified and the only updated chunks are those that denote when a value for a column
of a row has been set to NULL. By using this approach, chunks have a higher probability
to stay in the inner CPU caches and the cache coherence is easier to maintain, which
results in an improved performance and a better usage of the multicore capabilities in a
SMP architecture. This iterator approach obtains the result tuples as soon as they are
generated, unless there is a blocking operator such as grouping or sorting. This final
table is retrieved by the application with a forward sequential tuple iterator that
supports rewinding and repositioning into marked rows. When the result table is no
longer required then it is automatically removed from the temporary storage.

The query operator engine will be able to execute CloudMds Query Algebra (CQA)
programs, which are sequences of operators expressed in the JSON format described in
Section 3. CQA programs chain the operators following the Volcano model by means of
iterators on streams. Therefore, the construction of sequences of operations will make
that the operators are not interpreted line by line from the JSON plan. Also, the direct
flow of data among operators avoids dumping back and forth all the results to the table
store.

The query operator engine will be based on the new graph query operator engine that
Sparsity is building for Sparksee, which implements the previously described
architecture. They will share the parsing, query plan analysis and preparer. The query
operator engine will take also advantage of the multithreading capabilities that Sparsity
is implementing in the new graph query operator engine. But, there are several
important differences between the operator engine of CoherentPaaS and the one of
Sparksee:

 The graph query operator engine is based on graph specific operations such as
getting neighbors or accessing edge data. On the other hand, the query operators

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 23/58

for CoherentPaaS are relational operators. At the end of the project, Sparsity will
evaluate, as an exploitation of the project, if providing relational operators in
Sparksee is useful for graph use cases.

 The operator engine will not depend on Sparksee and will not need a Sparksee
database instance to be deployed. The backend to store data of the operator
engine is the Table Store module of CoherentPaaS. On the other hand, the graph
query operator uses Sparksee data structures to provide persistence and store
temporary results.

 The query operator engine will not need a Sparksee license. However, the graph
query operator is part of Sparksee and will need a license.

The query engine is composed of the modules shown in the following figure:

SQA
query

Parser

Dependency
Graph

Fanout
Analysis

Preparer

Optimizer

Processor

Result

Query Schema Context

Query Stream

Wrapper Datastore

Query Operator

Table Store

Query Engine

Memory Heap

Python

Stored
Tables

Local Tx
Manager

4.1. Parser

The parser component parses the JSON query and generates a dependency graph. It is a
LALR(1) parser implemented with the lemon1 tool. Each instance of the parser reads the
tokens using a tokenizer, and tokenizers get the text from string readers.

As the parser reads the query text, it generates a runop instance for each operator. All
runops belong to a single dependency graph. The result of a query is the result of its
topmost operator, which is also the root of the dependency graph. Examples of runops
are SELECT, JOIN, PROJECT, etc.

1
 http://www.hwaci.com/sw/lemon/

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 24/58

4.2. Dependency Graphs

In the current version, there is a main dependency graph per query and each subquery
has its own dependency graph which is a child of the main one.

Each runop in a dependency graph has a list of zero or more producers, its arguments,
and a list of zero or more consumers. Only the root operator has zero consumers and,
when an operator has more than one consumer, then it is implicitly a fan-out candidate.

Operators can have also scalar parameters (numbers, strings, etc.), collections such as
lists or property maps, or even expressions.

4.3. Fan-out Analysis

After the syntax phase that reads the query and generates the dependency graph, all
operators are scanned to detect fan-outs (more than one consumer). Each operator with
fan-out is replaced in the dependency graph by an instance of a fan-out special operator.
This operator has one single producer (the original fanned out operator) and as many
consumers as his producer had.

After this substitution, only instances of fan-out operators will have more than one
consumer. In runtime, each fan-out operator will cache its input data to provide virtual
copies to its consumers. When no more consumers are active, the cached data will be
released. If the data set becomes too large to be stored in the cache of the fan out
operator, the operator will create a temporary table in the Table Store. When the
operator finishes the execution, the temporary table will be deleted.

4.4. Preparer and Query Schemas

The next step is the semantic validation. Starting from the root in a top-down approach,
each operator is invoked to be prepared for execution, or, in other words, to check if
their inputs are valid. Also, during this process each operator figures out the structure of
its output (number of columns and data types) from its capabilities, parameters and
inputs.

Also, each expression parameter is also compiled into a compiled expression, which is a
prefix representation of the expression, and much more easy to evaluate using a stack.
During this compilation there is also a verification of the semantics of the expression,
and an optimization to simplify it to a more efficient and equivalent expression.

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 25/58

4.5. Optimizers

The optimization procedure follows a cascade model. Once the dependency graph has
been validated, one or more optimizers are invoked in sequence. Each optimizer receives
a dependency graph, and returns a dependency graph with the only restriction that it
must compute the same result. The returning graph is either the same graph when the
current optimizer could not apply any optimization, or an equivalent dependency graph
with an expected lower computational cost. Some examples of optimizers are CSE
(common sub-expressions), filter push-down, etc.

At this point, the query has been fully prepared and it is ready for execution.

4.6. Processor

A prepared query can be executed one or more times. The current query processor only
allows one concurrent execution of a prepared query, and it is single threaded. Memory
buffers for the operators are provided by a query context.

As stated before, the processor is a pull model with a pipeline of chunks of rows. Each
runop creates a single cursor that will be pipelined. The producers of a runop provides
their cursors as arguments to their consumers.

The processor starts by executing the root runop. For each operator, first it executes its
parameters or, in other words, gets their cursor. Then it creates the operator cursor. The
pipelining process consists in the classical pull approach where each cursor consumes
data from its arguments, in a cascade approach until the lowest operators in the tree,
which are the access methods.

At each invocation of a fetch method of a cursor, it returns a chunk of rows. The chunk
size is obtained in runtime from the context, and it is usually a multiple of the operating
system page size. Also, instead of managing rows, cursors have a column-store approach
were each column is a vector of values. For fixed size data types, each element of the
vector is a value, while for variable-length data types, such as strings, there is an
auxiliary pool of texts.

Vectors are never modified. If a chunk contains deleted rows, there is an auxiliary buffer
that informs of which rows are valid. Also, null values are denoted with a specific buffer
with a bit mask to mark nulls. The current limit is 64 columns because the presence bits
are stored in a 64 long value.

Thus, a column buffer is only marked as dirty when it is created. After that it is only
accessed in read-only mode. And, if the column needs to be modified, then a new buffer
is created to improve the cache usage. Only the buffers for deleted rows, null presence
and variable-length pools can be modified between operators.

With this pipelining approach, most of the operators are non-blocking and data is
generated from bottom to top in small chunks. There are some blocking operators, such

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 26/58

as aggregates or joins, that cannot return the first chunk until some of their input have
been fully processed.

Finally, the results of the query are the chunks generated by the cursor of the root
runop. This data is cached (as for fan-outs), until the application closes the iterator.

4.7. CQA Programming Interface

This section explains how to use the CQA using the following new classes:

- Query : a query executed inside a QueryContext
- ResultSet : the result of a query execution

- QueryStream : interface to allow the application to provide data during the query
execution
- QueryContext : application-defined environment to store temporary data. In
CoherentPaaS, the QueryContext will map to the Table Store.

4.7.1. Query

A Query in CQA encapsulates a program that can be executed inside the scope of a
QueryContext, and returns a single ResultSet composed by a collection of rows
and columns. A simple example of the usage of a Query is:

Value v = new Value();

QueryContext ctx = new MyAppQueryContext();

Query q = ctx.newQuery();

ResultSet rs = q.execute("VALUES([INT],[[1],[2],[3]])");

System.out.println(rs.getColumnName(0) + "=====");

while (rs.next()) {

 rs.getColumn(0, v);

 System.out.println(v);

}

rs.close();

q.close();

which prints out the query result:

COL_1

1

2

3

The content of a query can also be exported in `JSON` documents. For example:

Value v = new Value();

QueryContext ctx = new MyAppQueryContext();

Query q = ctx.newQuery();

ResultSet rs = q.execute("VALUES([INT],[[1],[2],[3]])");

System.out.println(rs.getJSON(2));

System.out.println(rs.getJSON(1));

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 27/58

rs.close();

q.close();

splits the result in two `JSON` documents:

{

 "columns": [

 { "COL_1": "INT" }

],

 "rows": [

 [1],

 [2]

]

"columns": [

 { "COL_1": "INT" }

],

 "rows": [

 [3]

]

}

The execute method is solved in two phases: the prepare step, where the query is
compiled and verified, and the run step, where the query is evaluated and solved. This is
known as the prepared statement procedure that will be fully supported in future
versions. Between both phases, the query can embed values inside placeholders for
dynamic parameters that are required for the query execution. An example of dynamic
parameter usage is:

Value v = new Value();

QueryContext ctx = new MyAppQueryContext();

Query q = ctx.newQuery();

v.setString("demo");

q.setDynamic("text", v);

try

{

 ResultSet rs = q.execute("VALUES([STRING],[[$text]])");

 rs.next();

 rs.getColumn(0, v);

 System.out.println("$" + v + "$");

 rs.close();

} catch (RuntimeException qe) {

 System.out.println("Query Exception catched: " + qe.getMessage());

}

q.close();

which prints out:

$demo$

Note that in this last example, both JSON parsing errors and execution errors are caught
as exceptions.

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 28/58

4.7.2. Streams

The query is executed as a whole by the query engine. This reduces the amount of
communication between the application and the engine through the APIs, with an
increase of performance due to the removal of data transformations in the wrapper, the
reduction of the checks for valid parameters, and by potential optimizations provided by
the query engine. But, in some cases, it is necessary to allow the application to interact
with the query execution, for example to solve an algorithm that is not supported in
CQA, or to provide data extracted from external data sources. The mechanism that
supports this in CQA is known as streams. A CQA STREAM is an application-defined
operation that receives zero or more arguments (scalar values or temporary tables), and
returns a stream of rows and columns.

Streams are managed through a QueryStream instance. Each subclass of

QueryStream must implement three methods:

 prepare - before the execution of the stream, receives the scalar values, and
prepares the instance for the execution

 start - the query engine has obtained the first rows of the temporary tables that
are parameters of the stream

 fetch - the query engine requests another row from the stream

The following example shows a stream that multiplies an input collection of numbers by
a fixed multiplier.

class StreamMult extends QueryStream {

 private double mult;

 private ResultSet res;

 // [in] args - input list of values

 // returns false on error

 public boolean prepare(ValueList args) {

 if (args.count() != 1) {

 return false;

 }

 Value v = args.get(0);

 if (v.getDataType() != DataType.Double) {

 return false;

 }

 mult = v.getDouble();

 return true;

 }

 // [in] input - optional list of input ResultSets

 // returns false on error

 public boolean start(ResultSetList input) {

 if (input.count() != 1) {

 return false;

 }

 res = input.get(0);

 if (res.getNumColumns() != 1) {

 return false;

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 29/58

 }

 if (res.getColumnDataType(0) != DataType.Long) {

 return false;

 }

 return true;

 }

 // [out] next row, or empty for end of iterator

 // returns false on error

 public boolean fetch(ValueList result) {

 if (res.next()) {

 Value v = new Value();

 res.getColumn(0, v);

 if (v.getDataType() == DataType.Long) {

 double d = v.getLong();

 result.add(v);

 v.setDouble(d * mult);

 result.add(v);

 return true;

 } else {

 return false;

 }

 }

 return true;

 }

}

Value v = new Value();

QueryContext ctx = new MyAppQueryContext();

Query q = ctx.newQuery();

StreamMult sMult = new StreamMult();

try

{

 q.setStream("mult", sMult);

 v.setLong(3);

 q.setDynamic("value", v);

 rs = q.execute("STREAM('mult',[LONG,DOUBLE],[2.5],

 [VALUES([LONG],[[$value]])])");

 System.out.println(rs.getJSON(10));

 rs.close();

} catch (RuntimeException qe) {

 System.out.println("Query Exception catched: " + qe.getMessage());

}

q.close();

which returns:

{

 "columns": [

 { "COL_1": "LONG" },

 { "COL_2": "DOUBLE" }

],

 "rows": [

 [3, 7.5]

]

}

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 30/58

4.7.3. QueryContext

A query is executed inside a QueryContext, which is an interface that provides all the
resources required by the query engine, such as:

 Memory management for query buffers.
 Access to external resources (files, data streams, ...).
 An interface to access a store, which materializes the results.

The current implementation only encapsulates a very simple memory heap, and raises
an error for any other operation. In future versions, the interface will allow subclasses to
implement all the required methods and connect to the Table Store.

4.8. CQA programs
The CloudMds Query Algebra (CQA) allows for the creation and execution of programs
(expressions) for the resolution of queries. CQA expressions are solved by combining
classical relational operators (selection, join, grouping, etc.) and calls to custom
functions written in native code through the stream operator.

Each of the CQA operators receive one or more cursors of data and, optionally, some
configuration parameters such as filter conditions, sorting order, etc. Each cursor
contains one or more columns of data, where each column is restricted to a single data
type of a fixed length binary representation (e.g. integer, double precision or
timestamp), or a fixed length offset to a dictionary of variable length values such as
UNICODE strings.

A CQA query returns a single table or result set, in the form of rows and columns that
can be iterated or formatted in a JSON document.

The following subsections describe in detail the CQA syntax.

4.8.1. Comments

There are two types of comments: line comments and block comments.

A line comment ignores all the text from the marker until the end of the line. The line
comment styles are:

 - SQL line comment: two dash characters '–'
 - SPARQL line comment: one hash character '#'
 - C++ and Cypher line comment: two slash characters '/'

A block comment ignores all the text between the start marker /* and the end marker
*/. Both markers are required: if the end marker does not exist, the parser raises a
syntax error. Block comments cannot be nested and line comments are ignored inside a
block comment.

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 31/58

Some examples of comments are:

-- SPARQL-style comment

SQL-style comment

// C++ style line comment

/* here a block comment starts

 everything is ignored

 -- even this line comment

 up to the end marker

 */

4.8.2. Reserved Words

The reserved words are those words with a specific meaning into the CQA algebra.
Reserved words are case insensitive: they can be written in any combination of
uppercase or lowercase letters.

The current list of reserved words is:

ADJACENT ALTER_ATTRIBUTE ALTER_TYPE AND ATTRIBUTES BETWEEN BOOL BOTH

CONNECT CREATE_ATTRIBUTE CREATE_EDGE_TYPE CREATE_INDEX_ATTRIBUTE

CREATE_NODE_TYPE DEFAULT DOUBLE DROP_ATTRIBUTE DROP_TYPE EDGES EXCEPT FALSE

GET GLOBAL GRAPH IN INDICES INGOING INSERT_EDGES INSERT_NODES INT LET LONG

MATCH NEIGHBORS NOT NULL OR OUTGOING PROJECT REMOVE RENAME SCAN SELECT

SEQUENCE SET SLICE STATISTICS STREAM STRING TIMESTAMP TRUE TYPES UNIQUE

VALUES

4.8.3. Identifiers

An identifier is a sequence of latin characters, digits and underscore characters that
starts by a latin character or an underscore. Identifiers are case sensitive, and at least one
character must be latin. Some examples of distinct identifiers are:

alfa Alfa ALFA Name_45 _A

Instead, the following are not valid regular identifiers:

45Name álfa _ __ _45

4.8.4. Values

CQA supports five different kinds of values: constants, undefined (null), lists, property
maps, and dynamic parameters.

4.8.4.1. Data types and constants

The basic data types supported in CQA are:

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 32/58

 INT: signed 32-bit integer numbers

 LONG: signed 64-bit integer numbers with the suffix 'L'

 DOUBLE: IEEE-754 double precision floating-point numbers

 BOOL: logic value TRUE or FALSE

 TIMESTAMP: ISO-8601 date and time with millisecond precision and UTC time
zone offsets. Timestamp values are surrounded by ampersand delimiters. The
valid range is from &1970-01-01T00:00:01Z& to &2038-01-19T03:14:07Z&.

 STRING: sequences of UNICODE characters delimited by single quotes. Special
characters can be escaped by the backslash character '\':

o '\'' : a single quote
o '\\' : backslash
o '\b' : backspace
o '\t' : horizontal tab
o '\n' : newline

o '\f': form feed
o '\r' : carriage return

Some examples of valid constants are:

-32456 123789

3435973836800L -1L

64.3 -0.2E-4

'O\'Hara' 'Three\n\tÁÈü\nUNICODE lines'

TRUE FALSE

&2010-10-21& &1999-12-31T23:59:59.999Z& &2010-10-21Z-02:15&

4.8.4.2. Undefined (NULL) Values

NULL denotes an undefined value. Any operation with a NULL operand always returns
NULL, and two NULL values are distinct because they are undefined. The behavior of
nulls will match the definition of null in CloudMdsQL.

4.8.4.3. Lists

A list is an ordered collection of values. Lists surrounded by square brackets, and the
values separated by commas. The values can be of different data types. Some examples
are:

[] -- empty list

[1, 2, 3] # sequence of numbers

['ABC', NULL, True] // different value types

4.8.4.4. Property Maps

A property map is a collection of properties. Each property is identified by a distinct
name and associated to a value. Property maps are surrounded by curly brackets and
each property is identified by a STRING literal. When a property is defined more than
once inside a map, only the last appearance is taken into account. Some examples are:

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 33/58

{} -- empty property map

{ 'a'=1, 'b'=FALSE, 'c'=NULL }

{'x'=1.0,'x'=2.0} -- single property 'x' with value 2.0

{'list'=[1,2]} -- list as property value

{'map'={}} -- map as property value

4.8.4.5. Dynamic Parameters

A dynamic parameter is a constant value that will be supplied by the application before
the execution of the query. A query can have multiple dynamic parameters, each one
identified by a different identifier prefixed by the '@' character.

A dynamic parameter has no data type, and its expected data type is deduced by the
parser from the semantics of the query. The query engine expects that a valid value for
any dynamic parameter will be set on runtime.

Valid examples of dynamic parameters are:

@A

@ B45

@Yes_No

Lists and property maps are not supported as runtime values in the current version of
CQA.

4.8.5. Expressions

An CQA expression is a combination of values, operators and functions that are
interpreted according to particular rules of precedence and of association. When
evaluated inside a query, an expression produces a single result value.

Parentheses can be used to explicitly denote precedence, by grouping parts of the
expression that should be evaluated first.

The current version of CQA supports only values (constants, NULL, lists, property maps
and dynamic parameters). The following list, in precedence order, describes the
operators and functions:

 X AND Y: logical AND between expressions X and Y. It is a short-circuit (lazy)
operator that only evaluates Y when X evaluates to TRUE.

 X OR Y: logical OR between expressions X and Y. It is a short-circuit (lazy)
operator that only evaluates Y when X evaluates to FALSE

 NOT X : logical NOT of expression X

 =, <>, <, <=, >, >= : comparison operators between two expressions

 +, - : binary addition and subtraction operators

 *, / : binary multiplication and division operators

 +, - : unary sign operator

 %S : returns the value in the column named as S

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 34/58

 %n : returns the value in the column with index n >= 0

 BETWEEN(V,L,H) : returns TRUE when L <= V <= H

 IS_NULL(V) : returns TRUE if V evaluates to NULL

 IN(V,L) : returns TRUE if the result of V is inside the list L

 MATCH(V,P,M) : returns TRUE if the result of V matches the pattern P. The
property map M is used to specify the escape character, case insensitive
matching, etc.

 datatype(V) : converts the result of V to another datatype which can be INT,
LONG, DOUBLE, STRING, BOOL or TIMESTAMP

 CASE(V,[C1:V1,...Cn:Rn],D) : checks if the result of V is equal to any Ci: if
so, returns its Vi, otherwise it returns D

4.8.6. CQA Queries

CQA queries are expressed as a combination of relational. The arguments of an operator
can be lists, property maps, or the result of the evaluation of expressions or other CQA
operators. An operator always returns a single table. The final result of an CQA
expression is always the result of its root operator.

For example:

RENAME(SLICE(VALUES([INT],[[1],[2],[3]]), NULL, 1), ['top-1'])

 has three nested operators: RENAME, SLICE and VALUES

 RENAME is the root operator

 the result of RENAME is the result of the expression

 the result of VALUES is an argument for SLICE

More complex programs can be written with the LET construct. A LET is a sequence of
one or more CQA expressions that are evaluated and their results are stored in temporal
variables. Variable names are regular identifiers followed by the character '@'. When a
variable is defined, the following operations can reference to this variable by such name.
The previous example can be represented using LET as:

LET @values = VALUES([INT],[[1],[2],[3]]),

 @top = SLICE(@values, NULL, 1)

 IN RENAME(@top, ['top-1'])

Both expressions are equivalent. Notice that expressions are evaluated in sequence: first
VALUES, then SLICE, and finally RENAME.

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 35/58

4.9. CQA operators

4.9.1. Basic Operations

The basic operations construct tables or perform simple transformations over a table.

4.9.1.1. VALUES(<datatypes>, <rows>)

Returns a new table populated with a predefined set of rows and column values. The
value for each column of each row must match the expected data type. Each row cannot
have a number of values greater than the number of columns. Rows with fewer values
than columns are filled with NULL values.

Input:

 datatypes - non-empty list of datatype: INT, STRING, etc.

 rows - optional list of rows, where each row is an optional list of values

Output:

A new table with one column for each element in datatypes, and filled with rows.

Examples:

VALUES([STRING],NULL)

COL_1

VALUES([STRING,INT,LONG,BOOL,DOUBLE,TIMESTAMP],

 [null,

 [],

 [null, 32],

 ['text', null, null, TRUE, 12.7, &2014-05-28&],

 ['hello\nworld', -12, 87888L, FALSE, 0.5e-2,

 &2013-01-2T22:15:18.321+01:00&]])

COL_1 COL_2 COL_3 COL_4 COL_5 COL_6

 32

text TRUE 12.7 2014-05-28T00:00:00.000Z

hello -12 87888 FALSE 0.005 2013-01-12T23:15:18.321Z

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 36/58

4.9.1.2. SLICE(<source>, <skip>, <limit>)

Returns a subset of the input rows.

Input:

 source - input table

 skip - optional, number of rows to skip from the beginning (NULL for none)

 limit - optional, maximum number of rows to return (NULL for all)

Output:

The input source without the first skip rows (optionally) and up to a maximum of
limit rows (also optional).

Examples:

SLICE(VALUES([INT],[[1],[2],[3]]), 1, NULL) -- all except the first one

COL_1

2

3

SLICE(VALUES([INT],[[1],[2],[3]]), NULL, 2) -- top 2

COL_1

1

2

4.9.1.3. RENAME(<source>, <names>)

Changes the names of one or more columns.

Input:

 source - input table

 names - list of new column names. Each name must be a string or NULL to keep
the original name. The length of the list must be the same as the number of
columns in source

Output:

The input source with some column names renamed.

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 37/58

Examples:

RENAME(VALUES([INT, DOUBLE],[[1, 3.14]]), [NULL, 'Pi'])

COL_1 Pi

1 3.14

4.9.1.4. PROJECT(<source>, <columns>)

Returns a subset of the columns in source. The order of the columns is the same as
their appearance in the list, and a column can appear only once one.

Input:

 source - input table with N columns

 columns - list of columns. Each column is identified by an int number in the
range from 0 to N-1

Output:

A subset of columns of all the rows in source.

Examples:

PROJECT(VALUES([INT, LONG, BOOL],[[1, 2L, TRUE]]), [2, 0])

COL_3 COL_1

TRUE 1

4.9.1.5. STREAM(<stream>, <columns>, <parameters>, <input>)

Executes an application-defined operation. The operation receives some parameters and
input tables, and returns a stream of rows.

Input:

 stream - application-defined name of the operation

 columns - list of data types of each column expected in the result

 parameters - optional list of values used to initialize the operation

 input - optional list of input tables to be used by the operation

Output:

As many columns as defined in columns, and the rows are generated as a stream by the
application.

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 38/58

Examples:

STREAM('mult-div',[INT,DOUBLE,DOUBLE],[2.5,2.0],

 [VALUES([INT],[[1],[2],[3]])])

COL_1 COL_2 COL_3

1 2.5 0.5

2 5 1

3 7.5 1.5

4.9.1.6. SEQUENCE(<op1>, ..., <opn>)

Executes in sequence all the operations, and returns the result of the execution of the
last operation. The intermediate results are discarded. This operation is useful when it is
necessary to execute independent operations in a specific order.

Input:

 - op1, ..., opn - operations to execute

Output:

The result of the execution of opn.

Examples:

SEQUENCE(VALUES([INT], NULL), SLICE(VALUES([INT],[[1],[2],[3]]), 1, 1))

COL_1

2

4.9.1.7. READ(<filename>, <columns>, <options>)

Reads a CSV (column separated value) data file. The file can be optionally compressed in
GZ format.

Input:

 filename - *string*, name of the CSV file

 columns - list of pairs [datatype props] with one entry for each column in
the file, where:

o datatype : datatype of the column
o props : optional property map

 skip: bool, to ignore this column in the output
o options - property map to configure the input

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 39/58

 locale : string, locale (default "en_US")

 separator : *string*, column separator character (default ',')
 quote : string, string delimiter (default '"')
 multiline : int, 0 for single line values, or the maximum number

of rows for a multiline value (default 0)

Output:

One row for each row in the data file, with one column for each column in the file except
those skipped.

Examples:

READ('movies.txt.gz',[INT {'skip'=true}, STRING, INT],{'separator'='|'})

COL_1 COL_2

A-Team 2006

Access denied 2005

Acid Rain 2006

4.9.2. Data Operations

The data operations are those that modify the contents of the rows, generate calculated
data, or operate between two or more inputs.

4.9.2.1. SELECT(<input>, <filter>)

Returns the rows that evaluate to true for a given condition.

Input:

 input - input table

 filter - a boolean expression

Output:

The filtered rows with the same columns as the input.

Examples:

SELECT(VALUES([INT,STRING],[[1,'A'],[2,'A'],[3,'B']]),

 BETWEEN(%0,1,2) AND %1='A')

COL_1 COL_2

2 A

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 40/58

4.9.2.2. GROUP(<input>, <groups>, <aggr>)

Computes aggregates over groups of rows. At least one group or one aggregate must
exists. If no groups are present, then the aggregates are computed over all the rows.

Input:

 input - input table

 groups - optional list of zero-based grouping column indexes

 aggr - optional list of aggregates
o COUNT(ALL) : count of rows in the group
o <aggr>(<col>) : compute <aggr> for column <col> in each group,

where the aggregate can be:
 COUNT : number of not-null values

 MIN : minimum value
 MAX : maximum value
 SUM : sum of numeric values

 AVG : average of numeric values
o <aggr>(DISTINCT <col>) : same as before, but only considering the

distinct values

Output:

If there are not grouping columns, one single row with a column for each aggregate
computed over all the input rows. Otherwise, one row for each group with as many
columns as grouping columns, and the aggregate columns.

Examples:

GROUP(VALUES([INT,STRING],[[1,'A'],[2,'A'],[3,'B']]), [1],

 [COUNT(ALL), MAX(0), SUM(DISTINCT 0)])

COL_1 AGGR_1 AGGR_2 AGGR_3

A 2 2 3

B 1 3 3

4.9.2.3. SORT(<input>, <columns>)

Sorts the rows based on one or more sorting conditions.

Input:

 input - input table

 columns - list of sorting columns, with the zero-based index and the optional
sort order (ASC or DESC)

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 41/58

Output:

The input rows sorted by the sorting criteria.

Examples:

SORT(VALUES([INT,STRING],[[1,'A'],[2,'A'],[3,'B']]), [1 DESC, 0])

COL_1 COL_2

3 B

1 A

2 A

4.9.2.4. EXTEND(<input>, <expressions>)

Creates new columns for each row by evaluating expressions over its current content.

Input:

 input - input table

 expressions - list of expressions to evaluate

Output:

For each input row, its current content plus the new columns with the result of the
evaluation of the expressions.

Examples:

EXTEND(VALUES([INT],[[1],[2],[3]]), [%0 * 2, %COL_1 > 1])

COL_1 EXPR_1 EXPR_2

1 2 FALSE

2 4 TRUE

3 6 TRUE

4.9.2.5. DISTINCT(<input>)

Returns the distinct rows in a table.

Input:

 input - input table

Output:

The distinct rows from the input table.

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 42/58

Examples:

DISTINCT(VALUES([INT,STRING],[[1,'A'],[3,'B'],[1,'A']]))

COL_1 COL_2

1 A

3 B

4.9.2.6. UNION(<input1>, ..., <inputn>)

Concatenates two or more compatible tables. Two tables are compatible if they have the
same number of columns with matching data types for each column.

Input:

 inputi - an input table

Output:

All the rows of all the input tables

Examples:

UNION(VALUES([INT],[[1],[3]]),VALUES([INT],[[2]]))

COL_1

1

3

2

4.9.2.7. PRODUCT(<left>, <right>)

Cartesian product of two tables.

Input:

 left - left input table

 right - right input table

Output:

The cartesian product between the rows of both inputs. Each output row has the
columns of its left component plus the columns of its right component.

Examples:

PRODUCT(VALUES([INT,STRING],[[1,'A'],[2,'B']]),VALUES([INT],[[3],[4]]))

LEFT_1 LEFT_2 RIGHT_1

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 43/58

1 A 3

1 A 4

2 B 3

2 B 4

4.9.2.8. JOIN(<left>, <right>, <condition>, <options>)

A join is a selection over a cartesian product of two tables.

Input:

 left - left input table

 right - right input table

 condition - boolean join expression, the supported operands are:

o =, <>, <, <=, >, >= : comparison operators between two zero-
based column indexes (prefixed with a % character).

o X AND Y : logical AND between X and Y
o X OR Y : logical OR between X and Y
o NOT X : negates X
o (X) : evaluates X, it can be used to change the evaluation priorities

 options - optional property map (for extensions such as semi-joins, join
algorithm, etc.)

Output:

A selection of the rows of the cartesian product between the rows of both inputs. Each
output row has the columns of its left component plus the columns of its right
component.

Examples:

JOIN(VALUES([STRING,INT],[['A',1],['B',2]]),

 VALUES([INT],[[3],[2]]),%1<%2,NULL)

LEFT_1 LEFT_2 RIGHT_1

A 1 3

A 1 2

B 2 3

4.10. Parsing CloudMdsQL query plans to CQA query
plans

This section shows the procedure of converting from a CloudMdsQL query to a CQA
query. For example, the following query accesses two data stores, one relational and
another native (MongoDB). The result of both subqueries is then joined in a single result.

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 44/58

T1(a int, b string)@DB1 = (SELECT a, b FROM tbl WHERE id > 100)

T2(a int, c string)@DB2 = {* db.find({ id: 200 }) *}

SELECT T1.a, T1.b, T2.c

FROM T1 JOIN T2 ON T1.a = T2.a

The query plan represented in JSON is:

{

 "sub": [

 {

 "name": "t1",

 "plan": {

 "op": "TRANSFORM",

 "plan": {

 "op": "PROJECT",

 "operands": [

 {

 "op": "SELECT",

 "operands": [

 { "op": "TABLEREF", "name": "tbl" }

],

 "filter": {

 "expr": "func",

 "function": ">",

 "operands": [

 { "expr": "colref", "colref": ["id"] },

 { "expr": "const", "datatype": "INT", "value": "100" }

]

 }

 }

],

 "columns": [

 {

 "value": { "expr": "colref", "colref": ["a"] },

 "name": "a"

 },

 {

 "value": { "expr": "colref", "colref": ["b"] },

 "name": "b"

 }

]

 },

 "datastore": "db1",

 "signature": ["INT", "STRING"]

 }

 },

 {

 "name": "t2",

 "plan": {

 "op": "NATIVE",

 "datastore": "db2",

 "code": " db.find({ id: 200 }) ",

 "signature": ["INT", "STRING"]

 }

 }

],

 "plan": {

 "op": "PROJECT",

 "operands": [

 {

 "op": "JOIN",

 "operands": [

 {

 "op": "PROJECT",

 "operands": [

 {

 "op": "CALL",

 "sub": "t1"

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 45/58

 }

],

 "columns": [

 {

 "value": { "expr": "colref", "colref": ["0"] }

 },

 {

 "value": { "expr": "colref", "colref": ["1"] }

 }

]

 },

 {

 "op": "PROJECT",

 "operands": [

 {

 "op": "CALL",

 "sub": "t2"

 }

],

 "columns": [

 {

 "value": { "expr": "colref", "colref": ["0"] }

 },

 {

 "value": { "expr": "colref", "colref": ["1"] }

 }

]

 }

],

 "type": "INNER",

 "condition": {

 "expr": "func",

 "function": "=",

 "operands": [

 { "expr": "colref", "colref": ["0", "0"] },

 { "expr": "colref", "colref": ["0", "1"] }

]

 },

 "result": [

 { "expr": "colref", "colref": ["0", "0"] },

 { "expr": "colref", "colref": ["1", "0"] },

 { "expr": "colref", "colref": ["0", "1"] },

 { "expr": "colref", "colref": ["1", "1"] }

]

 }

],

 "columns": [

 {

 "value": { "expr": "colref", "colref": ["0"] },

 "name": "a"

 },

 {

 "value": { "expr": "colref", "colref": ["1"] },

 "name": "b"

 },

 {

 "value": { "expr": "colref", "colref": ["3"] },

 "name": "c"

 }

]

 }

}

The procedure to convert the query plan is:

1. Identify all the dependencies from data stores:
a. hierarchical dependencies (from the query tree)

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 46/58

b. from REFERENCING clauses
2. From the data store dependencies, identify which ones will be cached into the

Table Store, and those that will flow in the pipeline without caching
3. Generate the CQA query. In particular:

a. each native and non native query is a STREAM operator
b. each Python query is a STREAM operator
c. cached data stores are accessed through the STORE functions

Thus, the sample query is translated into:

LET @t1 = STREAM('native',

 [INT,STRING],

 ['db1','

 "plan": {

 "op": "TRANSFORM",

 "plan": {

 "op": "PROJECT",

 "operands": [

 {

 "op": "SELECT",

 "operands": [

 { "op": "TABLEREF", "name": "tbl" }

],

 "filter": {

 "expr": "func",

 "function": ">",

 "operands": [

 {"expr": "colref", "colref": ["id"] },

 {"expr":"const","datatype":"INT","value":"100"}

]

 }

 }

],

 "columns": [

 {

 "value": { "expr": "colref", "colref": ["a"] },

 "name": "a"

 },

 {

 "value": { "expr": "colref", "colref": ["b"] },

 "name": "b"

 }

]

 },

 "datastore": "db1",

 "signature": ["INT", "STRING"]

 }'],

 NULL),

 @t2 = STREAM('native',

 [INT,STRING],

 ['db2','

 "plan": {

 "op": "NATIVE",

 "datastore": "db2",

 "code": " db.find({ id: 200 }) ",

 "signature": ["INT", "STRING"]

 }'],

 NULL)

 IN RENAME(PROJECT(

JOIN(@t1, @t2,%0=%0, NULL),

 [0,1,3]),

 ['a','b','c'])

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 47/58

5. Wrappers: Query Engine interaction
with the Data Stores

A wrapper provides the interface that attaches a data store to the CloudMDS Query
Engine (CQE). It handles fragments of the query plan that are intended for execution in a
data store and delivers interim results in the appropriate format.

Considering the diversity of data stores, their functionality is presented to the CQE using
a JSON schema, which describes the query plan fragments that can be handled. These
range from a simple native query string, opaque to the CQE, to supporting relational
operations such as join and grouped aggregation, which are directly processed by the
Operator Engine. The schema is a sub-set of the internal Query Plan schema described in
section Appendix A.

5.1. Rationale
The wrapper API and implementations are based on the Java platform and conceptually
similar to the standard JDBC interface, namely, regarding the usage of
Driver/Connection/Statement objects to provide nested context for query execution,
and a ResultSet to iterate over result data.

This similarity helps wrapper developers as JDBC is expected to be the interface to many
data stores or, at least, familiar to most wrapper developers. The wrapper interface
differs from JDBC in three important aspects. First, in contrast to JDBC that is supposed
to be useful to a wide range of client programs and thus offers different ways to
accomplish the same goal, the wrapper API is much simpler. Second, as the only client to
this API is the CQE, the wrapper focuses on performance, such as facilitating batch
processing by operators. Finally, it has to provide access to named tables in the Table
Store and to the Transactional Context.

5.2. Wrapper architecture and interfaces
The internal architecture of a wrapper and the interactions with the main CQE
components are depicted in the following figure:

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 48/58

Data StoreData Store

Wrapper

DataStore

Connection

Statement

Connection

Statement

getConnection

createStatement

Query
Stream

Local Transaction
Manager

Table Store

ResultSet
TransactionContext

byte[]
QueryPlan

plan.*

Statementsqlgen.*
(optional)

The main entry point to the wrapper is the DataStore interface, which provides
Connection contexts for the execution of Statements. The query is received as a Java
mapping of the JSON data model originating from the Query Stream. The Local
Transaction Manager is exposed as a current Transaction Context and is then given
write sets as opaque byte arrays. Interaction with the Table Store is, in both directions,
through the ResultSet batch iterator interface.

Classes and interfaces that compose the wrapper interface are grouped in four different
packages briefly described in this section. A complete specification is available in
Javadoc format with the source code.

5.2.1. eu.coherentpaas.cqe.datastore

This package contains the interfaces that must be implemented by each wrapper,
namely:

 DataStore: This represents an instance of a data store within the CQE. It is the
main entry point into the wrapper.

 Connection: This represents a single-threaded entry point to the data store.
Therefore, different Connection instances are used for concurrent usage of the
same data store.

 Statement: This holds cached state for a query, that can be executed multiple
times.

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 49/58

 DataStoreMetadata: Allows the CQE to query the data store for meta-data, for
instance, the schema of returned data.

5.2.2. eu.coherentpaas.cqe

This package exposes CQE interfaces to the wrapper for services provided by or data
exchanged with the CQE, namely:

 ResultSet: Provides a batch iterator to retrieve data, in both directions, between
the data store wrapper and the CQE.

 TransactionalContext: Encapsulates the current holistic transactional context that
is propagated from the CQE to the data stores.

 NativeQueryPlan/TransformQueryPlan: Root classes for native and
transformable query plans being sent to the wrapper.

5.2.3. eu.coherentpaas.cqe.plan

This package contains a mapping to Java of the query plan JSON schema using the Object
Mapping feature of the Jackson JSON framework for Java. It is thus used to provide the
wrappers with a convenient interface to receive query plans and, in particular, to
transform them using the Visitor pattern.

5.2.4. eu.coherentpaas.cqe.sqlgen

This package contains a generic converter from transformable query plan fragments to
SQL. It is thus useful only, even if not mandatory, for data stores that handle a SQL
dialect. It is based on the eu.coherentpaas.cqe.plan package and the Visitor pattern.

5.3. Common wrapper implementations
By providing the wrapper a query plan fragment that respects a sub-set of the query
plan JSON schema, the wrapper has a range of options for receiving queries and having
them executed, as explained below. A wrapper can thus provide any of these
alternatives, or even more than one of them simultaneously.

5.3.1. Native query, client-side execution

The wrapper specifies through JSON schema that it handles native queries (i.e., a JSON
document that has a NATIVE node as root). The wrapper then uses an embedded script
engine to handle these queries, exposing in the script language primitives for returning
the results in the CQE data model. The query has thus a large amount of control on how
the mapping is performed and makes this the preferred model for data stores with a
significantly different data model that cannot be automatically mapped to relational
data.
This is depicted in the following Figure:

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 50/58

Data StoreData Store

Wrapper
DataStore

Connection

Statement

Connection

Statement

getConnection

createStatement

ResultSet
TransactionContext

byte[]
QueryPlan

plan.*

Statement

Connection

Statement

Script
Thread

StatementScript
Invocation

(eval)

Script
Engine

5.3.2. Native query, server-side execution

The wrapper specifies through JSON schema that it handles native queries (i.e., a JSON
document that has a NATIVE node as root). These queries are shipped to the data store
for execution. The wrapper’s main task is to map results to the CQE data model, which
has to be done after the query has run and without its intervention. This approach is
appropriate, for instance, for non-standard SQL statements to be passed to a SQL data
store.

5.3.3. Transform query, custom interface

In this case, the wrapper specifies through JSON schema that it handles a sub-set of
transform query plans, such as table scans with filters (i.e., a JSON document that has a
TRANSFORM node as root). These plans are then interpreted in the wrapper, invoking
data store interfaces. This approach is useful, for instance, for key-value stores with very
simple data models and APIs that can do server-side filtering.

5.3.4. Transform query, SQL interface

The wrapper specifies through JSON schema that it handles transform query plans (i.e., a
JSON document that has a TRANSFORM node as root). These plans are then converted to
SQL statements using the eu.coherentpaas.cqe.sqlgen utility package sent for server-side
execution in the data store. This approach is expected to be the preferred for SQL-like
data stores and is depicted in the following Figure:

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 51/58

Data StoreData Store

Wrapper

DataStore

Connection

Statement

Connection

Statement

getConnection

createStatement

ResultSet
TransactionContext

byte[]
QueryPlan

plan.*

Statement

JDBC
Driver

Connection

Statement

JDBC
Connection

Statement

getConnection

createStatement

JDBC
Statement

sqlgen.*

5.4. Operation

5.4.1. Startup and shutdown

A wrapper is configured in the CQE by providing the name of a class implementing
eu.coherentpaas.cqe.datastore.DataStore, all required class path elements, and a
properties file. The content of this file is not in any way examined by the CQE and the
meaning of the property names and values is exclusively for use by the wrapper.
The wrapper is started by the CQE, by creating an instance of this class and invoking the
start method with the corresponding properties file. This instance is thus associated
with an instance of the data store, as specified in a wrapper specific format in the
properties file. It will remain valid until the CQE invokes the close method on the same
instance, which should release all resources used by the wrapper.

5.4.2. Connections and statements

A data store instance is used through connections. Each connection is obtained with a
getConnection method, used by a single thread, and returned to the wrapper by invoking
the close method in the connection object. The CQE should assume that obtaining and
releasing connection objects is a lightweight operation and is not expected to perform
pooling. It is up to the wrapper implementation to ensure this, possibly by keeping a

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 52/58

connection pool itself, if this is considered necessary. For instance, for SQL-like
databases this shouldn’t be necessary if the underlying JDBC driver itself does pooling.
Connections can be used to prepare and execute one or more statements. Only one
statement can be in execution at any given moment. Executing a second statement will
cancel pending result sets, which will not return further data. Execution of a statement
thus allows the following steps:

 Optionally, invocations of useNamedTable method inform the wrapper that the
next query should be allowed to use a named table, referred in an
implementation specific manner by that name. This method provides a callback
to be used later during execution to retrieve data from the Table Store. The
callback is not valid when not currently invoking the execute method.

 A mandatory invocation of prepare provides the query plan, that can be either a
native or a transform fragment, according to what is supported by the wrapper. It
optionally includes types and names of named parameters.

 Optionally, invocations of set* methods provide values for named parameters
referred to by the query plan. These are valid only for the next execution.

 The invocation of execute starts execution, providing a transactional context to be
relayed to the data store. It returns a result set to retrieve results, if any expected.

 Results are retrieved with next methods. When no more data is required, the close
method is invoked to release resources used for that query.

 Finally, an invocation to getWriteSet obtains an opaque representation of the
write set resulting from the execution, if any, that is relayed back to the
transaction manager.

It is expected that as much work as possible is done during the invocation of prepare,
being reused for multiple invocations of execute. For instance, a SQL-like data store
wrapper will convert the query plan to a SQL query and send it to the server for
compilation, using a JDBC prepared statement.

5.4.3. Named tables and parameters

Parameters are described by the query plan and their values are supplied before
execution. Regardless of the wrapper implementation, such as using an embedded
client-side script engine or a server-side query language, there is some implementation
dependent way to bind them to their values. For instance, in SQL this can be done with
prepared statements.
The same can be done for named tables when the query is executed in the client side. It
requires only that the named table is exposed in a way that calls back into the wrapper
to retrieve data, which is obtained from the Table Store through the Parameterized
interface.
This may be harder to accomplish for server-side execution, when the interface does not
support callback. This is the case for JDBC and thus for SQL-like data stores. In this case,
the wrapper can still do the following: When execute method is invoked and a named
table is being used, the wrapper can download all data from the Table Store and upload
it to a temporary table. After that, the execution proceeds with the appropriate data.
Finally, after execution completes, temporary tables are dropped.

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 53/58

6. References

[Boncz05] – P. Boncz, M. Zukowski, and N. Niels. MonetDB/X100: Hyper-Pipelining Query
Execution. CIDR. Vol. 5. 2005.

[Graefe94] - G. Graefe. Volcano - an extensible and parallel query evaluation system. IEEE
TKDS, 6(1):120–135, 1994.

[Tomasic98] - A. Tomasic, L. Raschid, P. Valduriez. Scaling Access to Heterogeneous Data
Sources with DISCO. IEEE Transactions on Knowledge and Data Engineering, 10(5): 808-
823, 1998.

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 54/58

Appendix A. Query Plan JSON Schema

This section contains the JSON schema as per draft 4 of http://json-schema.org, which
describes the format of the query execution plan, produced by CloudMdsQL compiler
and consumed by the execution engine.

{

 "description": "Schema for the CoherentPaaS query execution plan",

 "type": "object",

 "required": ["plan"],

 "properties": {

 "name": { "type": "string" },

 "text": { "type": "string" },

 "sub": {

 "type": "array",

 "items": {

 "type": "object",

 "required": ["name", "plan"],

 "properties": {

 "name": { "type": "string"},

 "params": {

 "type": "array",

 "items": {

 "type": "object",

 "required": ["name", "datatype"],

 "properties": {

 "name": { "type": "string" },

 "datatype": { "$ref": "#/definitions/datatype" }

 }

 }

 },

 "plan": { "$ref": "#/definitions/operation" }

 }

 }

 },

 "plan": { "$ref": "#/definitions/operation" }

 },

 "definitions": {

 "operation": {

 "type": "object",

 "oneOf": [

 { "$ref": "#/definitions/call" },

 { "$ref": "#/definitions/project" },

 { "$ref": "#/definitions/select" },

 { "$ref": "#/definitions/aggregate" },

 { "$ref": "#/definitions/join" },

 { "$ref": "#/definitions/python" },

 { "$ref": "#/definitions/native" },

 { "$ref": "#/definitions/transform" },

 { "$ref": "#/definitions/tableref" }

]

 },

 "expression": {

 "type": "object",

 "oneOf": [

 { "$ref": "#/definitions/cref" },

 { "$ref": "#/definitions/const" },

 { "$ref": "#/definitions/param" },

 { "$ref": "#/definitions/func" }

]

 },

 "call": {

 "type": "object",

 "required": ["op", "sub"],

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 55/58

 "properties": {

 "op": { "type": "string", "pattern": "CALL" },

 "sub": { "type": "string" },

 "params": {

 "type": "array",

 "items": {

 "type": "object",

 "required": ["name", "value"],

 "properties": {

 "name": { "type": "string" },

 "value": { "oneOf": [

 { "$ref": "#/definitions/const" },

 { "$ref": "#/definitions/param" }

] }

 }

 }

 }

 }

 },

 "project": {

 "type": "object",

 "required": ["op", "operands", "columns"],

 "properties": {

 "op": { "type": "string", "pattern": "PROJECT" },

 "operands": { "type": "array",

 "items": { "$ref": "#/definitions/operation" },

 "minItems": 1, "maxItems": 1 },

 "columns": {

 "type": "array",

 "items": {

 "type": "object",

 "required": ["name", "value"],

 "properties": {

 "name": { "type": "string" },

 "value": { "$ref": "#/definitions/expression" }

 }

 },

 "minItems": 1

 }

 }

 },

 "select": {

 "type": "object",

 "required": ["op", "operands", "filter"],

 "properties": {

 "op": { "type": "string", "pattern": "SELECT" },

 "operands": { "type": "array",

 "items": { "$ref": "#/definitions/operation" },

 "minItems": 1, "maxItems": 1 },

 "filter": { "$ref": "#/definitions/expression" }

 }

 },

 "aggregate": {

 "type": "object",

 "required": ["op", "operands"],

 "properties": {

 "op": { "type": "string", "pattern": "AGGR" },

 "operands": { "type": "array",

 "items": { "$ref": "#/definitions/operation" },

 "minItems": 1, "maxItems": 1 },

 "groupby": { "type": "array", "items": { "type": "integer" } },

 "aggregates": {

 "type": "array",

 "items": {

 "type": "object",

 "required": ["aggregate"],

 "properties": {

 "aggregate": { "enum": ["COUNT_ALL", "COUNT", "SUM",

 "AVG", "MIN", "MAX"] },

 "colref": { "type": "integer" }

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 56/58

 }

 }

 }

 }

 },

 "join": {

 "type": "object",

 "required": ["op", "operands", "type"],

 "properties": {

 "op": { "type": "string", "pattern": "JOIN" },

 "operands": { "type": "array",

 "items": { "$ref": "#/definitions/operation" },

 "minItems": 2, "maxItems": 2 },

 "type": { "enum": ["INNER", "LEFT", "RIGHT", "FULL"] },

 "condition": { "$ref": "#/definitions/expression" },

 "result": { "type": "array",

 "items": { "$ref": "#/definitions/cref" },

 "minItems": 1 }

 }

 },

 "python": {

 "type": "object",

 "required": ["op", "code", "signature"],

 "properties": {

 "op": { "type": "string", "pattern": "PYTHON" },

 "code": { "type": "string" },

 "signature": { "type": "array",

 "items": { "$ref": "#/definitions/datatype" },

 "minItems": 1 },

 "references": { "type": "array", "items": { "type": "string" } }

 }

 },

 "native": {

 "type": "object",

 "required": ["op", "datastore", "code"],

 "properties": {

 "op": { "type": "string", "pattern": "NATIVE" },

 "datastore": { "type": "string" },

 "code": { "type": "string" },

 "signature": { "type": "array",

 "items": { "$ref": "#/definitions/datatype" } },

 "references": { "type": "array",

 "items": { "type": "string" } }

 }

 },

 "transform": {

 "type": "object",

 "required": ["op", "datastore", "plan", "signature"],

 "properties": {

 "op": { "type": "string", "pattern": "TRANSFORM" },

 "datastore": { "type": "string" },

 "plan": { "$ref": "#/definitions/operation" },

 "signature": { "type": "array",

 "items": { "$ref": "#/definitions/datatype" },

 "minItems": 1 }

 }

 },

 "tableref": {

 "type": "object",

 "required": ["op", "name"],

 "properties": {

 "op": { "type": "string", "pattern": "TABLEREF" },

 "name": { "type": "string" }

 }

 },

 "cref": {

 "type": "object",

 "required": ["expr", "colref"],

 "properties": {

 "expr": { "type": "string", "pattern": "colref" },

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 57/58

 "colref": { "type": "array",

 "items": { "type": "string" },

 "minItems": 1 }

 }

 },

 "const": {

 "type": "object",

 "required": ["expr", "datatype", "value"],

 "properties": {

 "expr": { "type": "string", "pattern": "const" },

 "datatype": { "$ref": "#/definitions/datatype" },

 "value": { "type": "string" }

 }

 },

 "param": {

 "type": "object",

 "required": ["expr", "name"],

 "properties": {

 "expr": { "type": "string", "pattern": "param" },

 "name": { "type": "string" }

 }

 },

 "func": {

 "type": "object",

 "required": ["expr", "function"],

 "properties": {

 "expr": { "type": "string", "pattern": "func" },

 "function": { "type": "string" },

 "operands": { "type": "array",

 "items": { "$ref": "#/definitions/expression" } }

 }

 },

 "datatype": { "enum": ["STRING", "INT"] }

 }

}

