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1. Executive Summary 
 
Providing massive data processing capabilities in the cloud is a major trend in the design 
of data management solutions deployed on the cloud. The experience of the latest years 
is that no single data management system is the silver bullet for data processing, where 
all the data needs can be mapped. Currently, companies are using a variety of data 
solutions ranging from relational databases to NoSQL data stores, which come in 
multiple flavors such as graph databases, key-value data stores, array data stores, 
analytical cloud frameworks, document databases, data stream systems, etc. 
CoherentPaaS provides a software infrastructure to allow efficient and easy to program 
communication among this multitude of data management systems. In this deliverable, 
we describe the architecture of the query engine that interconnects the data stores.  
 
The query engine is central piece that coordinates the execution of queries in 
CoherentPaaS. This module executes queries in the CloudMdsQL language (see D3.1), 
which defines a syntax to mix the operations among the data repositories. The data in 
the query engine is modeled as tabular data: sets of tuples with a fixed number of 
attributes. This model is simple enough to allow importation and exportation of data 
from NoSQL data representations.  
 
Clients connecting to the CoherentPaaS infrastructure will have the impression that all 
systems act as a single database. In order to provide such a feeling from the client 
perspective, we will provide a JDBC connector for the CoherentPaaS infrastructure of 
CoherentPaaS. JDBC is one of the standard methods to connect to a database system, and 
thus clients will connect to the database like a regular database system. However, user 
queries will be able to take full advantage of the different repositories in the 
CoherentPaaS infrastructure by introducing SQL and NoSQL statements. 
 
This deliverable contains the description of the architecture of the query engine for the 
common query language and its interaction with the data stores. In the next year of the 
project, we will implement this architecture and build the prototype for the query 
engine and compiler. This deliverable is structured as follows: 

 In Section 2, we describe the global query engine architecture. The global Query 
Mediator performs all the coordination activities among the modules and is the 
central block of the CoherentPaaS architecture. The Query Engine is able to 
compute queries by forwarding them to the Data Stores, and also by combining 
results using the Operator Engine. The Operator Engine is able to execute 
programs that combine CloudMds Query Algebra (CQA) operators in a query 
plan. The Query Engine has also a module, called Table Store, which saves the 
tabular results of queries into tables. The tables contain either the query results 
or temporary results that will be further processed by the Operator Engine or any 
of the data stores in the CoherentPaaS ecosystem. We select one of the database 
providers of the consortium, MonetDB, as the storage of the Table Store. 

 In Section 3, we explain the query compiler architecture. This module performs 
the compilation of the queries. The compilation process starts with the syntactic 
and semantic validation of a given query, and then performs a sequential set of 
optimization procedures that rewrite the user query to equivalent statements 
that are faster to compute. The query plan is finally converted to CQA operations 



CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model                                      page 6/58 

 

  

that will control the execution flow of the data between the Data Stores and the 
Operator Engine. 

 In Section 4, we describe the architecture of the Operator Engine and the set of 
operations that will be implemented in the project. The Operator Engine 
implements a set of operations that build CQA programs. These operations 
process and combine the results provided by the different data stores.  

 In Section 5, we describe the communication interface of the query engine with 
the data store by means of a wrapper infrastructure. This interface is 
implemented using a single API, which unify the interaction between the Query 
Mediator and the data stores. Using this approach, we ensure that data providers 
not part of the CoherentPaaS project can attach their database to the 
CoherentPaaS platform by only implementing the wrapper interface. In this 
section, we discuss the calls to the interface and the logic that the data store 
provider must implement.  
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2. CloudMds Query Engine Architecture 
 
The Cloud multi-data store Query Engine of CoherentPaaS will be integrated with a very 
scalable transactional processing system that provides full ACID transactions over 
arbitrary sets of cloud data stores. CoherentPaaS will use a mediator/wrapper 
architecture. The Query Mediator is the component that performs communication 
between the clients that implement the user functionalities, and the set of database 
engines in CoherentPaaS. We depict a schema of the modules: 
 

 
 
 
The main modules of the query engine are the following: 

 JDBC client: Interfaces to provide access to the database architecture. 
 Query compiler & optimizer: Module that transforms a CloudMdsQL query to the 

CQA algebra language. The optimizer will perform a set of processes that rewrite 
the original query to an equivalent query in CloudMdsQL language with a smaller 
expected execution time.  

 Query Mediator: Controller class that coordinates the client communication, 
query compilation, execution of query operators and access to databases of 
CoherentPaaS. The query mediator will contain an instance of the local 
transaction manager that will act as a proxy for the holistic transaction manager. 

 Table Store: Storage of temporary results of the queries.  
 Operator Engine: component that implements relational operators in order to 

combine and process the results of the data stores and the Table Store. 
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 DBi: database provider available in the CoherentPaaS platform. This includes both 
relational and NoSQL data repositories. 

 Wrappers: interfaces that perform the connection between the Query Mediator 
and the database storages. 

 
The first implementation of the query engine will be single instance. However, for 
scalability purposes, the query engine will be extended to a scalable system in the cloud. 
The architecture will replicate the query engine in multiple computing instances, in 
which each instance has all the capabilities to run a query. These instances will not share 
resources, but will access to any of the data stores available in the cloud. The access to 
these data stores will keep a strong coherence with the synchronization provided by the 
holistic transaction manager. 
 
A load balancer will redirect the incoming new client queries to the query engine 
instance that is less loaded at that moment. Once a query has been compiled in an 
instance of the query engine, the user application will send the query to that query 
engine.  After the evaluation of the first prototype, we will evaluate if it is necessary to 
apply a dynamic load balancing policy that allows queries to relocate among the query 
engines once they are compiled. The instances of the query engine will execute incoming 
queries as described for the case of the single query engine. The query engine instances 
will connect to the shared pool of databases through the corresponding data store 
connectors.  
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2.1. Query Engine Execution Flow 
We describe the main execution flow of the query engine. 
 

2.1.1. Startup 

 
The startup procedure initializes the Table Store that will be used for that instance of the 
query engine, initializes the transaction manager and all databases available. The 
startup procedure will be used when no more instances of the query engine are already 
running. 
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2.1.2. Shutdown 

The shutdown procedure stops the arrival of new queries to the system and initiates the 
shutdown process. This process aborts pending queries, notifies all data stores about the 
shutdown and closes the Table Store. 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

2.1.3. Query compilation 

User code requests a PreparedStatement on the JDBC driver. This request is forwarded 
to the query compiler through the Query Mediator. The query compilation procedure 
optimizes and transforms the user query into a prepared statement that is ready to be 
executed. 
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2.1.4. Query execution 

Client code starts a new query. The mediator retrieves the CQA precompiled query and 
interprets each operation: it checks the database engine that will perform the sub-query 
and forwards the operation to it. 
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2.1.5. Create and destroy instances of the distributed query engine  

The query engine may have multiple replicas for scalability purposes as described in 
Section 2. In this mode of operation, the instances of the query engine follow a slightly 
modified version of the initialization and shutdown process when they are created or 
destroyed. The difference is that the table store is neither created nor destroyed by each 
individual instance, because the table store is shared among all instances. Even if an 
instance of the query engine is removed, the contents of the table store should remain 
visible for the other instances. Therefore, only the initialization of the first instance of 
the query engine creates the table store, and only the last one removes the contents of 
the table store.  
 

2.2. Table Store 
The query engine follows a stream model of operations, where the last operator pulls 
results from the previous one. The Table Store is the component that is used by the 
query engine to provide persistence to some temporal results and final results of the 
queries. Blocking operators that need to store large datasets will use the Table Store as 
the repository to save partial data. Temporal results may need to be consumed by 
multiple operators, which run at different speeds. When the fan-out operator (see 
Section 4.3) detects that the cache is not enough to deal with the operator speed 
mismatch, it starts storing the incoming elements in a temporary private table of the 
Table Store. Furthermore, final results that will remain accessible by name will also be 
materialized in the Table Store.  
 
We define several requirements for the Table Store: 

1. Store tabular data efficiently: the query engine represents all the data as tables. It 
is necessary that the Table Store represents the data as tuples and attributes in 
order to reduce the schema mismatch between the Table Store and the Operator 
Engine. 

2. Storage of named tables: the Table Store needs to store multiple tables 
simultaneously and identify these tables by name. 

3. Management of arbitrarily large data sets: queries among databases of the 
CoherentPaaS infrastructure may retrieve arbitrarily large datasets. Therefore, it 
is necessary that the Table Store has out of core capabilities to keep result sets 
that are larger than the memory available. 

4. Easy access to data for the wrappers: each data provider in the project will be 
able to access the contents of the Table Store from its wrapper. Therefore, it is 
necessary that the Table Store provides easy interfaces to access the data. 

 
We select MonetDB database as the storage of the Table Store. MonetDB fulfills the 
previously stated requirements as follows. First, it is a relational database management 
system and thus it is able to represent tabular datasets natively. Furthermore, MonetDB 
is a database that has shown excellent performance in benchmark evaluations due to its 
column store model and its implementation adapted to modern multicore CPUs. Second 
MonetDB allows the identification of the datasets by storing them in different tables 
using the relational model. Third, MonetDB offers an out of core functionality that is able 
to store large datasets and compress them on disk when the data does not fit in memory. 
Fourth, MonetDB has a fully compatible JDBC driver and an excellent integration with 
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Java, which is the implementation language of the Query Mediator. Therefore, MonetDB 
seems an adequate backend for the Table Store. 
 
The Data Store operations provide a temporary storage where tables can be stored to be 
reused later by the current query or by others. Stored tables can be TEMPORARY only 
for the current session, or GLOBAL to be available for all sessions. Temporary tables are 
automatically destroyed when the session is finished, and global tables are removed by a 
drop command or when the engine is shutdown. In the following sections, we describe 
the operations to store and retrieve named tables from the Table Store. 
 

2.2.1.1. SAVE(<source>, <name>, <options>) 

It stores the result of a query operator as a table expression. The operator will pull rows 
from the source until it has produced all the results. The new table will be identified by 
the name given as the second parameter.  The options parameter contains flags that 
modify the persistence of the table.  
 
Input: 

 source - stores a table with a given name. 

 name -  name of the table 

 options -  optional property map with the options for the operator engine. 
o replace: TRUE to replace another table with the same name. When 

FALSE(default), it raises an error if the name already exists. 
o scope: GLOBAL or TEMPORARY (default) 

 
Output: 
If completed successfully, it returns a non empty table with one column and one row 
that indicates the number of rows stored. Otherwise, returns an empty table. 
 
Examples: 
SAVE(VALUES([INT],[[3],[2]]),’example’,{‘replace’=TRUE}) 

 

COL_1 

2 

 
 

2.2.1.2. LOAD(<name>) 

Retrieves an stored table 
 
Input: 

 Name – name of the table 
 

Output: 
The contents of the stored table.  
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Examples: 
LOAD(’example’) 

 
COL_1 

3 

2 

 
 

2.2.1.3. DROP(<name>) 

Deletes a stored table. 
 
Input: 

 Name – name of the table 
 
Output: 
If completed successfully, it returns a non empty table with one column and one row 
with a value 1. Otherwise, returns a table which contains a 0. 
 
 
Examples: 
DROP(‘example’) 

 

COL_1 

1 

 
 

2.3. Query Engine Client: JDBC  
From the perspective of a client that connects to the CoherentPaaS infrastructure, the 
query engine will be seen as a database. Therefore, we decided to implement the 
interaction between the clients and the query engine as a JDBC connection, which is one 
of the most popular database connection standards.  
 
JDBC interface is part of the standard SDK and does not need to include additional 
libraries. We will create an implementation of the interfaces provided by java 1.7 SDK. 
We will implement the following interfaces:  

 Connection:  creates a connection between the client and the query engine. 
 PreparedStatement: issues queries written in CloudMdsQL to the query engine. 

These queries will be compiled and later executed. 
 ResultSet: provides a table like interface to retrieve the results from 

CoherentPaaS. 
 
The choice of JDBC has several advantages that will facilitate the adoption of 
CoherentPaaS and an easy access, which will turn into a larger impact of the technology: 

 Standardized access method: JDBC is part of the standard SDK, and thus it makes 
installation and testing easy. Additionally, database programmers are familiar to 
JDBC interfaces and can start using the CoherentPaaS infrastructure without 
learning a new database interface. 
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 Access from multiple environments: Java is a multiplatform language and 
implementations of the Java Virtual Machine run in almost any computing device: 
mobile phones, desktop stations and supercomputers. Furthermore, Java 
provides the Java Native Interface (JNI) that gives access to Java classes for any 
other language. Therefore, the CoherentPaaS infrastructure will be accessible to 
virtually any system. 

 Reusability of older code: There is a large set of existing software applications 
that use JDBC interfaces to access the data. Since we will implement these 
interfaces, the adaptation of old code to CoherentPaaS will be easy because all the 
software logic can be kept. Programmers adapting old code will only need to 
update the queries issued to the database in order to take advantage of the 
CoherentPaaS cloud database 
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3. Query Compiler Architecture 
The query compiler parses a CloudMdsQL query and generates a query execution plan 
that is executed by the query engine. It uses the Boost.Spirit framework for parsing 
context-free grammars, following the recursive descent approach. The compiler uses 
named table expression signatures or may query a catalog to retrieve metadata 
information necessary for semantic analysis. The execution plan is then delivered to the 
query processor in the form of a JSON document that contains a query execution tree 
with sufficient information to configure and run efficiently each of the query operations. 
The common JSON schema (according to draft 4 of http://json-schema.org) describing 
the format of a CloudMdsQL execution plan is provided in Appendix A. A valid execution 
plan must be able to be validated against this schema. 
 

3.1. Query Decomposition 
During query decomposition, the compiler builds the execution plan, which in its 
simplest form is a tree structure, where each non-leaf node represents a relational 
operation, and each leaf node represents a sub-query against a data store. At this stage, 
the compiler also prepares a set of native queries which will be passed to the 
corresponding wrappers and hence to the underlying data stores (this process will be 
explained later). Each node of the query plan tree represents a relational operation and 
an intermediate relation, result from the operation. Since the language allows the 
definition of named table expressions, which can be used as operands to several 
operations, it is possible that an intermediate relation is the input of more than one 
relational operator, therefore the query plan appears to be a graph rather than a tree 
structure. 
 
While building the execution strategy, the compiler identifies a forest of sub-trees within 
the query plan, each of which is associated to a certain data store. Each of these sub-
trees is meant to be delivered to the corresponding wrapper, who has to translate it to a 
native query and execute it against the data store. The rest of the query execution plan is 
the part that will be handled by the common query engine. Hence, we now outline two 
main subsets of the global execution plan: 

 a forest of sub-trees that will be executed locally by each data store and 
 a common query plan that will be executed by the common query engine, with 

leaf nodes consuming the relations returned by each wrapper as result of sub-
tree execution. 

At query decomposition stage, the boundary between the two subsets is preliminary and 
may be modified during the query optimization stage the following ways: 

 the compiler may push selection operations from the common plan to sub-trees, 
in order to filter out as much data as possible before the query engine retrieves it, 
thus saving communication costs and improving the overall efficiency; 

 the compiler may pull operations from sub-trees to the common plan if the 
corresponding data stores are not capable of performing them (see section 3.4). 
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3.2. Query Optimization 
Due to the lack of global catalog and database statistics and because of the usage of 
native sub-queries that are considered as black boxes (and therefore cannot be 
analyzed), the capability of query engine to perform cost-based optimization is limited. 
Although some data stores can provide cost estimation of a particular sub-query, there 
are still many cases, for which the sub-queries are expressed in languages that cannot be 
subject to analysis, e.g. embedded Python code that invokes data store’s API. For this 
reason, CloudMdsQL language gives its programmers possibility to specify execution 
directives by writing explicit join ordering and even explicitly specifying the join method 
to use. The compiler considers all explicitly specified JOIN…ON constructs in the FROM 
clause and thus identifies sub-trees from the common query plan that are considered 
atomic, i.e. not subject to join reordering. Besides taking into account explicit directives, 
the query optimizer always pushes selection operations down the query tree as much as 
possible, which may result in rewriting data store sub-queries by adding filter 
conditions. 
 
To reduce the communication cost between data stores and the query engine, the latter 
can benefit from the usage of bind joins, which are efficient join operations between 
relations, retrieved from different data stores, processed following this approach: the 
left-hand side relation is retrieved, during which the tuples are stored in an intermediate 
storage and the distinct values of the join attribute(s) are kept in a list of values, which 
will be passed as a filter to the right-hand side sub-query. As an example, let us consider 
the following CloudMdsQL fragment: 

SELECT a.x, b.y FROM b JOIN (BIND) a ON b.id = a.id 

The execution directive (BIND) following the JOIN keyword means that join condition 
will be bound to the right-hand side of the join operation. First, the relation B is 
retrieved from the corresponding data store using its query mechanism. Then, the 
distinct values of B.id are used as a filter condition in the query that retrieves the 
relation A from its data store. Assuming that the distinct values of B.id are b1 … bn, 
the query to retrieve the right-hand side relation of the bind join uses the following SQL 
approach (or its equivalent according to the data store’s query language): 

SELECT a.id, a.x FROM a WHERE a.id IN (b1, …, bn) 

Thus, only the rows from A that match the join criteria are retrieved. In order to perform 
this operation, the final sub-query to retrieve relation A must be composed by the query 
engine during runtime. Therefore, for each right-hand side of a bind join, the query 
compiler prepares an “almost ready” native query sentence, with placeholders for 
including the bind join condition, which will be added later by the query engine during 
runtime. 
 
Whenever join ordering is not explicitly specified by execution directives, to generate a 
fairly efficient query execution plan at global level, the query optimizer may follow a 
best-effort approach according to the availability of local cost information that, 
whenever possible, should be provided by the wrappers. We introduce several 
approaches that can be adopted for the purpose. Each wrapper implementation may 
consider the cost-estimating capability of its data store in order to provide an efficient 
mechanism to perform cost estimation of sub-queries. Any of the described below 
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methods can be used for the purpose, depending on the features provided by the data 
store: 

 If the data store can efficiently estimate the cost of a sub-query and the size of its 
result set (like EXPLAIN on prepared statements), the query engine may benefit 
from this to directly estimate the cost of a sub-query. 

 In other cases, the wrapper implementation can make use of available database 
statistics (like cardinalities, number of distinct values per column, etc.) and 
metadata information (like the availability and types of indexes) in order to 
provide cost and selectivity functions to support the global optimization task. 

 If none of the above methods are applicable, but the data store can process 
aggregate queries like COUNT(*), MIN and MAX, the wrapper can periodically run 
in background such queries, thus synthesizing and keeping statistics like the 
number of tuples in a table or the min/max values of an attribute. 

However, the lack of cost models in some NoSQL data stores and the limited (or lack of) 
capability to build database statistics do not allow for defining a precise global cost 
model for query optimization. Therefore, the solution to the optimization problem has to 
deal with incomplete cost information following approaches involving heuristics, 
dynamic query optimization and user-defined cost and selectivity functions. 
 
Sub-query rewriting can be planned by the optimizer in several occasions: 

 selection pushdowns which result in pushing filter conditions from the common 
plan to sub-trees; 

 usage of bind joins which implies adding filter conditions to the sub-query in 
order to allow the retrieval of only those tuples that match the join criteria; 

 taking advantage of sort-merge joins which requires adding sorting operations to 
sub-queries in order to guarantee that the retrieved relations are sorted by their 
join attributes. 

The first rewriting approach is considered always efficient, i.e. whenever the data store 
is capable of handling it, the optimizer will plan selection pushdown. However, bind 
joins or merge joins will be planned either if explicitly specified by CloudMdsQL 
directives or as a result of optimization decision, of course taking into account data 
store’s capabilities as well. 
 

3.3. Sub-querying SQL Compatible NoSQL Data Stores 
Since the data model of some NoSQL data stores (e.g. key-value or document databases) 
can be considered as a subset of the relational model, in most cases it is possible to map 
simple SQL commands to native queries, without compromising the functionality. In fact, 
SQL-like languages are already commonly used with data stores based on the BigTable 
data model, e.g. CQL for Cassandra. For such data stores, the recommended approach for 
sub-querying within CloudMdsQL is to use SQL table expressions against the data store, 
even though the data store does not natively support SQL. Whenever an SQL table 
expression is used as a nested query against a data store, it is considered as a sub-select 
statement and hence is transformed into a sub-tree in the query execution plan. Thus, 
each SQL table expression can be subject to further transformations and may be 
rewritten by the optimizer before submitted for execution to the data store. This allows 
the CloudMdsQL engine to perform optimizations of the global query execution plan 
(like pushing selections, projections and join operations down the tree as much as 
possible) or take advantage of bind joins, etc. Each sub-tree is then delivered to the 
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corresponding wrapper, which interprets and transforms it to a native query, in order to 
execute it against the data store using its native query mechanism. 
 

3.4. SQL Capabilities 
In order to build executable sub-query plans, the query engine must be aware of the 
capabilities of the corresponding data store, to perform operations supported by the 
common data model. Therefore, the wrapper implementer must identify the subset of 
the common algebra that is supported by the data store. Thus, the query planner can 
decide on which parts of the global query plan can be handled locally by the data stores 
and which part should remain in the common query plan (see Section 3.1). For example, 
a MongoDB data store can perform selection operations – analogous to the document 
collection method find() – but is not able to perform joins. Being aware of that, the query 
planner can push selection operations down to the sub-query plan, but will assign any 
join operation between MongoDB document collections to the common query plan. 
 
The method to handle data source capabilities, proposed in [Tomasic98], requires that 
the query engine serializes the sub-query plan (or single operations from it) to a 
sentence of a specific language, that should be matched against a pattern, provided by 
the corresponding wrapper – if the validation succeeds, then the data store is capable of 
executing the sub-query. Thus the query planner can determine the boundary between 
the common query plan and the sub-plan that will be handled by the data store. 
 
In CloudMdsQL a similar approach is proposed which makes use of JSON schemas as an 
instrument for the wrapper to express its data store’s capabilities. To test the 
executability of a sub-plan (or a single operation) against a data store, the query planner 
serializes it to a JSON document that has to be validated against the JSON schema 
exposed by the wrapper. Below is an example of a capability JSON schema for a key-
value data store, that is capable only of performing selection operations involving 
comparisons on the ‘key’ attribute (only certain elements of the schema object are 
shown): 
 
{ 

  "properties": { 

    "op": { "type": "string", "pattern": "SELECT" }, 

    "tableref": { "type": "string" }, 

    "filter": { "$ref": "#/definitions/expression" } 

  }, 

  "definitions": { 

    "expression": { "oneOf": [ 

      { "$ref": "#/definitions/comparison" }, 

      { "$ref": "#/definitions/function" } 

    ] }, 

    "comparison": { "properties": { 

      "comp": { "type": "string", "pattern": "=|<|>|<=|>=|<>" }, 

      "lhs": { "properties": { 

        "colref": { "type": "string", "pattern": "key" }, 

      }, 

      "rhs": { "type": "string" } 

    } }, 

    "function": { "properties": { 

      "func": { "type": "string", "pattern": "AND|OR" }, 

      "lhs": { "$ref": "#/definitions/expression" }, 

      "rhs": { "$ref": "#/definitions/expression" } 
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    } } 

  } 

} 

 
Now let us consider the following sub-query that is composed of two conjunctive 
selection conditions, each of which is tested against the capability specification. The 
result of the validation shows that condition #1 can be handled by a selection operation 
in the key-value data store and therefore it will be left in the sub-query, while condition 
#2 doesn’t pass the validation, and therefore will be pulled up in the common plan to be 
processed by to common query engine. 

SELECT key, value FROM tbl WHERE key BETWEEN 10 AND 20 AND value > key 

Condition #1: key BETWEEN 10 AND 20 
Validation: success 

Condition #2: value > key 
Validation: failure 

{ 

  "op": "SELECT", 

  "tableref": "tbl", 

  "filter": { 

    "func": "AND", 

    "lhs": { "comp": ">=", 

             "lhs": {"colref": "key"}, 

             "rhs": "10" }, 

    "rhs": { "comp": "<=", 

             "lhs": {"colref": "key"}, 

             "rhs": "20" } 

  } 

} 

{ 

  "op": "SELECT", 

  "tableref": "tbl", 

  "filter": { 

    "comp": ">", 

    "lhs": {"colref": "value"}, 

    "rhs": {"colref": "key"} 

  } 

} 

 

 
Generally, for each data store it is important to identify the intersection of the set of its 
supported operators and the set of CloudMdsQL operators. Therefore, a common 
procedure is, for each wrapper implementer, to outline a subset of the common JSON 
schema (see Appendix A) in order to prepare the capabilities schema for its data store. 



CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model                                      page 22/58 

 

  

4. Query Operator Engine Architecture 
 
The query operator engine is the component that combines the results from the data 
stores by performing classical relational operations (selection, join, grouping, etc.). The 
operators will be implemented following an iterator (Volcano-like) model [Graefe94] 
with highly efficient operators optimized for SMP architectures, taking advantage of the 
multiple cores and threads available, and being conscious of the different memory cache 
levels.  
 
Each of the query operators receive one or more cursors of tabular data and optionally 
some configuration parameters such as filter conditions, sorting order, etc. Each cursor 
contains one or more columns of data, where each column is restricted to a single data 
type of a fixed length binary representation (e.g. integer, double precision or 
timestamp), or a fixed length offset to a dictionary of variable length values such as 
UNICODE strings. Thus, chunks of data can be efficiently managed as a vector of fixed 
length values by taking advantage of SIMD instructions as presented in [Boncz05]. 
Columns are also split into chunks of data of a small size, usually a multiple of the 
operating system page size (a few Kbytes). 
  
The iterator model processes the query from top to bottom: at each step one chunk of 
data for each column is provided to a consumer operator. Pipelined chunks are never 
modified and the only updated chunks are those that denote when a value for a column 
of a row has been set to NULL. By using this approach, chunks have a higher probability 
to stay in the inner CPU caches and the cache coherence is easier to maintain, which 
results in an improved performance and a better usage of the multicore capabilities in a 
SMP architecture. This iterator approach obtains the result tuples as soon as they are 
generated, unless there is a blocking operator such as grouping or sorting. This final 
table is retrieved by the application with a forward sequential tuple iterator that 
supports rewinding and repositioning into marked rows. When the result table is no 
longer required then it is automatically removed from the temporary storage.  
 
The query operator engine will be able to execute CloudMds Query Algebra (CQA) 
programs, which are sequences of operators expressed in the JSON format described in 
Section 3. CQA programs chain the operators following the Volcano model by means of 
iterators on streams. Therefore, the construction of sequences of operations will make 
that the operators are not interpreted line by line from the JSON plan. Also, the direct 
flow of data among operators avoids dumping back and forth all the results to the table 
store.  
 
The query operator engine will be based on the new graph query operator engine that 
Sparsity is building for Sparksee, which implements the previously described 
architecture. They will share the parsing, query plan analysis and preparer. The query 
operator engine will take also advantage of the multithreading capabilities that Sparsity 
is implementing in the new graph query operator engine. But, there are several 
important differences between the operator engine of CoherentPaaS and the one of 
Sparksee: 

 The graph query operator engine is based on graph specific operations such as 
getting neighbors or accessing edge data. On the other hand, the query operators 
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for CoherentPaaS are relational operators. At the end of the project, Sparsity will 
evaluate, as an exploitation of the project, if providing relational operators in 
Sparksee is useful for graph use cases. 

 The operator engine will not depend on Sparksee and will not need a Sparksee 
database instance to be deployed. The backend to store data of the operator 
engine is the Table Store module of CoherentPaaS. On the other hand, the graph 
query operator uses Sparksee data structures to provide persistence and store 
temporary results.  

 The query operator engine will not need a Sparksee license. However, the graph 
query operator is part of Sparksee and will need a license.  

 
The query engine is composed of the modules shown in the following figure: 
 

SQA
query

Parser

Dependency
Graph

Fanout
Analysis

Preparer

Optimizer

Processor

Result

Query Schema Context

Query Stream

Wrapper Datastore

Query Operator

Table Store

Query Engine

Memory Heap

Python

Stored
Tables

Local Tx
Manager

 

4.1. Parser 
 
The parser component parses the JSON query and generates a dependency graph. It is a 
LALR(1) parser implemented with the lemon1 tool. Each instance of the parser reads the 
tokens using a tokenizer, and tokenizers get the text from string readers. 
 
As the parser reads the query text, it generates a runop instance for each operator. All 
runops belong to a single dependency graph. The result of a query is the result of its 
topmost operator, which is also the root of the dependency graph. Examples of runops 
are SELECT, JOIN, PROJECT, etc. 

                                                        
1
 http://www.hwaci.com/sw/lemon/ 



CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model                                      page 24/58 

 

  

 

4.2. Dependency Graphs 
 
In the current version, there is a main dependency graph per query and each subquery 
has its own dependency graph which is a child of the main one. 
 
Each runop in a dependency graph has a list of zero or more producers, its arguments, 
and a list of zero or more consumers. Only the root operator has zero consumers and, 
when an operator has more than one consumer, then it is implicitly a fan-out candidate. 
 
Operators can have also scalar parameters (numbers, strings, etc.), collections such as 
lists or property maps, or even expressions.  
 

4.3. Fan-out Analysis 
 
After the syntax phase that reads the query and generates the dependency graph, all 
operators are scanned to detect fan-outs (more than one consumer). Each operator with 
fan-out is replaced in the dependency graph by an instance of a fan-out special operator. 
This operator has one single producer (the original fanned out operator) and as many 
consumers as his producer had. 
 
After this substitution, only instances of fan-out operators will have more than one 
consumer. In runtime, each fan-out operator will cache its input data to provide virtual 
copies to its consumers. When no more consumers are active, the cached data will be 
released. If the data set becomes too large to be stored in the cache of the fan out 
operator, the operator will create a temporary table in the Table Store. When the 
operator finishes the execution, the temporary table will be deleted. 
 

4.4. Preparer and Query Schemas 
 
The next step is the semantic validation. Starting from the root in a top-down approach, 
each operator is invoked to be prepared for execution, or, in other words, to check if 
their inputs are valid. Also, during this process each operator figures out the structure of 
its output (number of columns and data types) from its capabilities, parameters and 
inputs. 
 
Also, each expression parameter is also compiled into a compiled expression, which is a 
prefix representation of the expression, and much more easy to evaluate using a stack. 
During this compilation there is also a verification of the semantics of the expression, 
and an optimization to simplify it to a more efficient and equivalent expression. 
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4.5. Optimizers 
 
The optimization procedure follows a cascade model. Once the dependency graph has 
been validated, one or more optimizers are invoked in sequence. Each optimizer receives 
a dependency graph, and returns a dependency graph with the only restriction that it 
must compute the same result. The returning graph is either the same graph when the 
current optimizer could not apply any optimization, or an equivalent dependency graph 
with an expected lower computational cost. Some examples of optimizers are CSE 
(common sub-expressions), filter push-down, etc. 
 
At this point, the query has been fully prepared and it is ready for execution. 
 

4.6. Processor  
 
A prepared query can be executed one or more times. The current query processor only 
allows one concurrent execution of a prepared query, and it is single threaded. Memory 
buffers for the operators are provided by a query context. 
 
As stated before, the processor is a pull model with a pipeline of chunks of rows. Each 
runop creates a single cursor that will be pipelined. The producers of a runop provides 
their cursors as arguments to their consumers. 
 
The processor starts by executing the root runop. For each operator, first it executes its 
parameters or, in other words, gets their cursor. Then it creates the operator cursor. The 
pipelining process consists in the classical pull approach where each cursor consumes 
data from its arguments, in a cascade approach until the lowest operators in the tree, 
which are the access methods. 
 
At each invocation of a fetch method of a cursor, it returns a chunk of rows. The chunk 
size is obtained in runtime from the context, and it is usually a multiple of the operating 
system page size. Also, instead of managing rows, cursors have a column-store approach 
were each column is a vector of values. For fixed size data types, each element of the 
vector is a value, while for variable-length data types, such as strings, there is an 
auxiliary pool of texts. 
 
Vectors are never modified. If a chunk contains deleted rows, there is an auxiliary buffer 
that informs of which rows are valid. Also, null values are denoted with a specific buffer 
with a bit mask to mark nulls. The current limit is 64 columns because the presence bits 
are stored in a 64 long value. 
 
Thus, a column buffer is only marked as dirty when it is created. After that it is only 
accessed in read-only mode. And, if the column needs to be modified, then a new buffer 
is created to improve the cache usage. Only the buffers for deleted rows, null presence 
and variable-length pools can be modified between operators. 
 
With this pipelining approach, most of the operators are non-blocking and data is 
generated from bottom to top in small chunks. There are some blocking operators, such 
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as aggregates or joins, that cannot return the first chunk until some of their input have 
been fully processed. 
 
Finally, the results of the query are the chunks generated by the cursor of the root 
runop. This data is cached (as for fan-outs), until the application closes the iterator. 
 

4.7. CQA Programming Interface 
 
This section explains how to use the CQA using the following new classes: 
 
- Query : a query executed inside a QueryContext 
- ResultSet : the result of a query execution 

- QueryStream : interface to allow the application to provide data during the query 
execution 
- QueryContext : application-defined environment to store temporary data. In 
CoherentPaaS, the QueryContext will map to the Table Store. 
 

4.7.1. Query 

 
A Query in CQA encapsulates a program that can be executed inside the scope of a 
QueryContext, and returns a single ResultSet composed by a collection of rows 
and columns. A simple example of the usage of a Query is: 
 
Value v = new Value(); 

QueryContext ctx = new MyAppQueryContext(); 

Query q = ctx.newQuery(); 

ResultSet rs = q.execute("VALUES([INT],[[1],[2],[3]])"); 

System.out.println(rs.getColumnName(0) + "====="); 

while (rs.next()) { 

    rs.getColumn(0, v); 

    System.out.println(v); 

} 

rs.close(); 

q.close(); 

 
which prints out the query result: 
 

COL_1 

1 

2 

3 

 
 
The content of a query can also be exported in `JSON` documents. For example: 
 
Value v = new Value(); 

QueryContext ctx = new MyAppQueryContext(); 

Query q = ctx.newQuery(); 

ResultSet rs = q.execute("VALUES([INT],[[1],[2],[3]])"); 

System.out.println(rs.getJSON(2)); 

System.out.println(rs.getJSON(1)); 
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rs.close(); 

q.close(); 

 
splits the result in two `JSON` documents: 
 
{ 

 "columns": [ 

  { "COL_1": "INT" } 

 ], 

 "rows": [ 

    [ 1 ], 

    [ 2 ] 

 ] 

 

"columns": [ 

  { "COL_1": "INT" } 

 ], 

 "rows": [ 

    [ 3 ] 

 ] 

} 

 
The execute method is solved in two phases: the prepare step, where the query is 
compiled and verified, and the run step, where the query is evaluated and solved. This is 
known as the prepared statement procedure that will be fully supported in future 
versions. Between both phases, the query can embed values inside placeholders for 
dynamic parameters that are required for the query execution. An example of dynamic 
parameter usage is: 
 
Value v = new Value(); 

QueryContext ctx = new MyAppQueryContext(); 

Query q = ctx.newQuery(); 

v.setString("demo"); 

q.setDynamic("text", v); 

try 

{ 

    ResultSet rs = q.execute("VALUES([STRING],[[$text]])"); 

    rs.next(); 

    rs.getColumn(0, v); 

    System.out.println("$" + v + "$"); 

    rs.close(); 

} catch (RuntimeException qe) { 

    System.out.println("Query Exception catched: " + qe.getMessage()); 

} 

q.close(); 

 
which prints out: 
 
$demo$ 

 
Note that in this last example, both JSON parsing errors and execution errors are caught 
as exceptions. 
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4.7.2. Streams 

 
The query is executed as a whole by the query engine. This reduces the amount of 
communication between the application and the engine through the APIs, with an 
increase of performance due to the removal of data transformations in the wrapper, the 
reduction of the checks for valid parameters, and by potential optimizations provided by 
the query engine. But, in some cases, it is necessary to allow the application to interact 
with the query execution, for example to solve an algorithm that is not supported in 
CQA, or to provide data extracted from external data sources. The mechanism that 
supports this in CQA is known as streams. A CQA STREAM is an application-defined 
operation that receives zero or more arguments (scalar values or temporary tables), and 
returns a stream of rows and columns. 
 
Streams are managed through a QueryStream instance. Each subclass of 

QueryStream must implement three methods: 
 

 prepare - before the execution of the stream, receives the scalar values, and 
prepares the instance for the execution 

 start - the query engine has obtained the first rows of the temporary tables that 
are parameters of the stream 

 fetch - the query engine requests another row from the stream 
 
The following example shows a stream that multiplies an input collection of numbers by 
a fixed multiplier. 
 
class StreamMult extends QueryStream { 

    private double mult; 

    private ResultSet res; 

     

    // [in] args - input list of values 

    // returns false on error         

    public boolean prepare(ValueList args) { 

        if (args.count() != 1) { 

            return false; 

        } 

 

        Value v = args.get(0); 

        if (v.getDataType() != DataType.Double) { 

            return false; 

        } 

                 

        mult = v.getDouble(); 

        return true; 

    } 

     

    // [in] input - optional list of input ResultSets 

    // returns false on error         

    public boolean start(ResultSetList input) { 

        if (input.count() != 1) { 

            return false; 

        } 

 

        res = input.get(0); 

        if (res.getNumColumns() != 1) { 

            return false; 
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        } 

        if (res.getColumnDataType(0) != DataType.Long) { 

            return false; 

        } 

        return true; 

    } 

     

    // [out] next row, or empty for end of iterator 

    // returns false on error 

    public boolean fetch(ValueList result) { 

        if (res.next()) { 

            Value v = new Value(); 

            res.getColumn(0, v); 

            if (v.getDataType() == DataType.Long) { 

                double d = v.getLong(); 

                result.add(v); 

                v.setDouble(d * mult); 

                result.add(v); 

                return true; 

            } else { 

                return false; 

            } 

        } 

        return true; 

    } 

} 

         

Value v = new Value(); 

QueryContext ctx = new MyAppQueryContext(); 

Query q = ctx.newQuery(); 

StreamMult sMult = new StreamMult(); 

try 

{ 

    q.setStream("mult", sMult); 

    v.setLong(3); 

    q.setDynamic("value", v); 

    rs = q.execute("STREAM('mult',[LONG,DOUBLE],[2.5], 

                   [ VALUES([LONG],[[$value]]) ])"); 

    System.out.println(rs.getJSON(10)); 

    rs.close(); 

} catch (RuntimeException qe) { 

    System.out.println("Query Exception catched: " + qe.getMessage()); 

} 

q.close(); 

 
which returns: 
 
{ 

 "columns": [ 

  { "COL_1": "LONG" }, 

  { "COL_2": "DOUBLE" } 

 ], 

 "rows": [ 

    [ 3, 7.5 ] 

 ] 

} 
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4.7.3. QueryContext 

 
A query is executed inside a QueryContext, which is an interface that provides all the 
resources required by the query engine, such as: 

 Memory management for query buffers. 
 Access to external resources (files, data streams, ...). 
 An interface to access a store, which materializes the results. 

 
The current implementation only encapsulates a very simple memory heap, and raises 
an error for any other operation. In future versions, the interface will allow subclasses to 
implement all the required methods and connect to the Table Store. 
 
 

4.8. CQA programs 
The CloudMds Query Algebra (CQA) allows for the creation and execution of programs 
(expressions) for the resolution of queries. CQA expressions are solved by combining 
classical relational operators (selection, join, grouping, etc.) and calls to custom 
functions written in native code through the stream operator. 
 
Each of the CQA operators receive one or more cursors of data and, optionally, some 
configuration parameters such as filter conditions, sorting order, etc. Each cursor 
contains one or more columns of data, where each column is restricted to a single data 
type of a fixed length binary representation (e.g. integer, double precision or 
timestamp), or a fixed length offset to a dictionary of variable length values such as 
UNICODE strings. 
 
A CQA query returns a single table or result set, in the form of rows and columns that 
can be iterated or formatted in a JSON document. 
 
The following subsections describe in detail the CQA syntax. 
 

4.8.1. Comments 

 
There are two types of comments: line comments and block comments. 
 
A line comment ignores all the text from the marker until the end of the line. The line 
comment styles are: 
 
 - SQL line comment: two dash characters '–' 
 - SPARQL line comment: one hash character '#' 
 - C++ and Cypher line comment: two slash characters '/' 
 
A block comment ignores all the text between the start marker /* and the end marker 
*/. Both markers are required: if the end marker does not exist, the parser raises a 
syntax error. Block comments cannot be nested and line comments are ignored inside a 
block comment. 
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Some examples of comments are: 
 
-- SPARQL-style comment 

# SQL-style comment 

// C++ style line comment 

/* here a block comment starts 

 everything is ignored 

 -- even this line comment 

 up to the end marker 

 */ 

 
 

4.8.2. Reserved Words 

 
The reserved words are those words with a specific meaning into the CQA algebra. 
Reserved words are case insensitive: they can be written in any combination of 
uppercase or lowercase letters. 
 
The current list of reserved words is: 
 
ADJACENT ALTER_ATTRIBUTE ALTER_TYPE AND ATTRIBUTES BETWEEN BOOL BOTH 

CONNECT CREATE_ATTRIBUTE CREATE_EDGE_TYPE CREATE_INDEX_ATTRIBUTE 

CREATE_NODE_TYPE DEFAULT DOUBLE DROP_ATTRIBUTE DROP_TYPE EDGES EXCEPT FALSE 

GET GLOBAL GRAPH IN INDICES INGOING INSERT_EDGES INSERT_NODES INT LET LONG 

MATCH NEIGHBORS NOT NULL OR OUTGOING PROJECT REMOVE RENAME SCAN SELECT 

SEQUENCE SET SLICE STATISTICS STREAM STRING TIMESTAMP TRUE TYPES UNIQUE 

VALUES 

 

4.8.3. Identifiers 

 
An identifier is a sequence of latin characters, digits and underscore characters that 
starts by a latin character or an underscore. Identifiers are case sensitive, and at least one 
character must be latin. Some examples of distinct identifiers are: 
 
alfa Alfa ALFA Name_45 _A 

 
Instead, the following are not valid regular identifiers: 
 
45Name álfa _ __ _45 

 

4.8.4. Values 

 
CQA supports five different kinds of values: constants, undefined (null), lists, property 
maps, and dynamic parameters. 
 

4.8.4.1. Data types and constants 

The basic data types supported in CQA are: 
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 INT: signed 32-bit integer numbers 

 LONG: signed 64-bit integer numbers with the suffix 'L' 

 DOUBLE: IEEE-754 double precision floating-point numbers 

 BOOL: logic value TRUE or FALSE 

 TIMESTAMP: ISO-8601 date and time with millisecond precision and UTC time 
zone offsets. Timestamp values are surrounded by ampersand delimiters. The 
valid range is from &1970-01-01T00:00:01Z& to &2038-01-19T03:14:07Z&. 

  STRING: sequences of UNICODE characters delimited by single quotes. Special 
characters can be escaped by the backslash character '\': 

o '\'' : a single quote 
o '\\' : backslash 
o '\b' : backspace 
o '\t' : horizontal tab 
o '\n' : newline 

o '\f': form feed 
o '\r' : carriage return 

 
Some examples of valid constants are: 
 
-32456 123789 

3435973836800L -1L 

64.3 -0.2E-4 

'O\'Hara' 'Three\n\tÁÈü\nUNICODE lines' 

TRUE FALSE 

&2010-10-21& &1999-12-31T23:59:59.999Z& &2010-10-21Z-02:15&  

 

4.8.4.2. Undefined (NULL) Values 

 
NULL denotes an undefined value. Any operation with a NULL operand always returns 
NULL, and two NULL values are distinct because they are undefined. The behavior of 
nulls will match the definition of null in CloudMdsQL. 
 

4.8.4.3. Lists 

 
A list is an ordered collection of values. Lists surrounded by square brackets, and the 
values separated by commas. The values can be of different data types. Some examples 
are: 
 
[] -- empty list 

[1, 2, 3] # sequence of numbers 

['ABC', NULL, True] // different value types 

 

4.8.4.4. Property Maps 

 
A property map is a collection of properties. Each property is identified by a distinct 
name and associated to a value. Property maps are surrounded by curly brackets and 
each property is identified by a STRING literal. When a property is defined more than 
once inside a map, only the last appearance is taken into account. Some examples are: 
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{} -- empty property map 

{ 'a'=1, 'b'=FALSE, 'c'=NULL } 

{'x'=1.0,'x'=2.0} -- single property 'x' with value 2.0 

{'list'=[1,2]} -- list as property value 

{'map'={}} -- map as property value 

 

4.8.4.5. Dynamic Parameters 

 
A dynamic parameter is a constant value that will be supplied by the application before 
the execution of the query. A query can have multiple dynamic parameters, each one 
identified by a different identifier prefixed by the '@' character. 
 
A dynamic parameter has no data type, and its expected data type is deduced by the 
parser from the semantics of the query. The query engine expects that a valid value for 
any dynamic parameter will be set on runtime. 
 
Valid examples of dynamic parameters are: 
 
@A 

@ B45 

@Yes_No 

 
Lists and property maps are not supported as runtime values in the current version of 
CQA. 
 

4.8.5. Expressions 

 
An CQA expression is a combination of values, operators and functions that are 
interpreted according to particular rules of precedence and of association. When 
evaluated inside a query, an expression produces a single result value. 
 
Parentheses can be used to explicitly denote precedence, by grouping parts of the 
expression that should be evaluated first. 
 
The current version of CQA supports only values (constants, NULL, lists, property maps 
and dynamic parameters). The following list, in precedence order, describes the 
operators and functions: 
 

 X AND Y: logical AND between expressions X and Y. It is a short-circuit (lazy) 
operator that only evaluates Y when X evaluates to TRUE. 

 X OR Y: logical OR between expressions X and Y. It is a short-circuit (lazy) 
operator that only evaluates Y when X evaluates to FALSE 

 NOT X : logical NOT of expression X 

 =, <>, <, <=, >, >= : comparison operators between two expressions 

 +, - : binary addition and subtraction operators 

 *, / : binary multiplication and division operators 

 +, - : unary sign operator 

 %S : returns the value in the column named as S 
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 %n : returns the value in the column with index n >= 0 

 BETWEEN(V,L,H) : returns TRUE when L <= V <= H 

 IS_NULL(V) : returns TRUE if V evaluates to NULL 

 IN(V,L) : returns TRUE if the result of V is inside the list L 

 MATCH(V,P,M) : returns TRUE if the result of V matches the pattern P. The 
property map M is used to specify the escape character, case insensitive 
matching, etc. 

 datatype(V) : converts the result of V to another datatype which can be INT, 
LONG, DOUBLE, STRING, BOOL or TIMESTAMP 

 CASE(V,[C1:V1,...Cn:Rn],D) : checks if the result of V is equal to any Ci: if 
so, returns its Vi, otherwise it returns D 

 

4.8.6. CQA Queries 

 
CQA queries are expressed as a combination of relational. The arguments of an operator 
can be lists, property maps, or the result of the evaluation of expressions or other CQA 
operators. An operator always returns a single table. The final result of an CQA 
expression is always the result of its root operator.   
 
For example: 
 
RENAME(SLICE(VALUES([INT],[[1],[2],[3]]), NULL, 1), ['top-1']) 

 
 has three nested operators: RENAME, SLICE and VALUES 

 RENAME is the root operator 

 the result of RENAME is the result of the expression 

 the result of VALUES is an argument for SLICE 
 
More complex programs can be written with the LET construct. A LET is a sequence of 
one or more CQA expressions that are evaluated and their results are stored in temporal 
variables. Variable names are regular identifiers followed by the character '@'. When a 
variable is defined, the following operations can reference to this variable by such name. 
The previous example can be represented using LET as: 
 
LET @values = VALUES([INT],[[1],[2],[3]]), 

    @top = SLICE(@values, NULL, 1) 

 IN RENAME(@top, ['top-1']) 

 
Both expressions are equivalent. Notice that expressions are evaluated in sequence: first 
VALUES, then SLICE, and finally RENAME.  
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4.9. CQA operators 
 

4.9.1. Basic Operations 

 
The basic operations construct tables or perform simple transformations over a table. 
 

4.9.1.1. VALUES(<datatypes>, <rows>) 

 
Returns a new table populated with a predefined set of rows and column values. The 
value for each column of each row must match the expected data type. Each row cannot 
have a number of values greater than the number of columns. Rows with fewer values 
than columns are filled with NULL values. 
 
Input: 
 

 datatypes - non-empty list of datatype: INT, STRING, etc. 

 rows - optional list of rows, where each row is an optional list of values 
 
Output: 
 
A new table with one column for each element in datatypes, and filled with rows. 
  
Examples: 
  
VALUES([STRING],NULL) 

 
COL_1 

 
VALUES([STRING,INT,LONG,BOOL,DOUBLE,TIMESTAMP], 

       [null, 

        [], 

        [null, 32], 

        ['text', null, null, TRUE, 12.7, &2014-05-28&], 

        ['hello\nworld', -12, 87888L, FALSE, 0.5e-2, 

         &2013-01-2T22:15:18.321+01:00&]]) 

         
 

COL_1 COL_2 COL_3 COL_4 COL_5 COL_6 

      

      

 32     

text   TRUE 12.7 2014-05-28T00:00:00.000Z 

hello -12 87888 FALSE 0.005 2013-01-12T23:15:18.321Z 
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4.9.1.2. SLICE(<source>, <skip>, <limit>) 

 
Returns a subset of the input rows. 
 
Input: 

 source - input table 

 skip - optional, number of rows to skip from the beginning (NULL for none) 

 limit - optional, maximum number of rows to return  (NULL for all) 
 
Output: 
 
The input source without the first skip rows (optionally) and up to a maximum of 
limit rows (also optional). 
 
 
 
 
Examples: 
 
SLICE(VALUES([INT],[[1],[2],[3]]), 1, NULL) -- all except the first one 

 
 

COL_1 

2 

3 

 
SLICE(VALUES([INT],[[1],[2],[3]]), NULL, 2) -- top 2 

 
 

COL_1 

1 

2 

 
 

4.9.1.3. RENAME(<source>, <names>) 

 
Changes the names of one or more columns. 
 
Input: 

 source - input table 

 names - list of new column names. Each name must be a string or NULL to keep 
the original name. The length of the list must be the same as the number of 
columns in source 

 
Output: 
 
The input source with some column names renamed. 
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Examples: 
 
RENAME(VALUES([INT, DOUBLE],[[1, 3.14]]), [NULL, 'Pi']) 

 
COL_1 Pi 

1 3.14 

 

4.9.1.4. PROJECT(<source>, <columns>) 

 
Returns a subset of the columns in source. The order of the columns is the same as 
their appearance in the list, and a column can appear only once one. 
 
Input: 
 

 source - input table with N columns 

 columns - list of columns. Each column is identified by an int number in the 
range from 0 to N-1 

 
 
Output: 
 
A subset of columns of all the rows in source. 
 
Examples: 

 
PROJECT(VALUES([INT, LONG, BOOL],[[1, 2L, TRUE]]), [2, 0]) 

 
COL_3 COL_1 

TRUE 1 

 
 

4.9.1.5. STREAM(<stream>, <columns>, <parameters>, <input>) 

 
Executes an application-defined operation. The operation receives some parameters and 
input tables, and returns a stream of rows. 
 
Input: 
 

 stream - application-defined name of the operation 

 columns - list of data types of each column expected in the result 

 parameters - optional list of values used to initialize the operation 

 input - optional list of input tables to be used by the operation 
 
Output: 
 
As many columns as defined in columns, and the rows are generated as a stream by the 
application. 
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Examples: 
 
STREAM('mult-div',[INT,DOUBLE,DOUBLE],[2.5,2.0], 

       [ VALUES([INT],[[1],[2],[3]]) ]) 

 
COL_1 COL_2 COL_3 

1 2.5 0.5 

2 5 1 

3 7.5 1.5 

 
 

4.9.1.6. SEQUENCE(<op1>, ..., <opn>) 

 
Executes in sequence all the operations, and returns the result of the execution of the 
last operation. The intermediate results are discarded. This operation is useful when it is 
necessary to execute independent operations in a specific order. 
 
 
 
Input: 
 
 - op1, ..., opn - operations to execute 
 
Output: 
 
The result of the execution of  opn. 
 
Examples: 
 
SEQUENCE(VALUES([INT], NULL), SLICE(VALUES([INT],[[1],[2],[3]]), 1, 1)) 

 
COL_1 

2 

 
 

4.9.1.7. READ(<filename>, <columns>, <options>) 

 
Reads a CSV (column separated value) data file. The file can be optionally compressed in 
GZ format. 
 
Input: 
 

 filename - *string*, name of the CSV file 

 columns - list of pairs [datatype props] with one entry for each column in 
the file, where: 

o datatype : datatype of the column 
o props : optional property map 

 skip: bool, to ignore this column in the output 
o options - property map to configure the input 
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 locale : string, locale (default "en_US") 

 separator : *string*, column separator character (default ',') 
 quote : string, string delimiter (default '"') 
 multiline : int, 0 for single line values, or the maximum number 

of rows for a multiline value (default 0) 
  
Output: 
 
One row for each row in the data file, with one column for each column in the file except 
those skipped. 
 
Examples: 
 
READ('movies.txt.gz',[INT {'skip'=true}, STRING, INT],{'separator'='|'}) 

 
 

COL_1 COL_2 

A-Team 2006 

Access denied 2005 

Acid Rain 2006 

 

4.9.2. Data Operations 

 
The data operations are those that modify the contents of the rows, generate calculated 
data, or operate between two or more inputs. 
 

4.9.2.1. SELECT(<input>, <filter>) 

 
Returns the rows that evaluate to true for a given condition. 
 
Input: 
 

 input - input table 

 filter - a boolean expression  
  
Output: 
 
The filtered rows with the same columns as the input. 
 
Examples: 
 
SELECT(VALUES([INT,STRING],[[1,'A'],[2,'A'],[3,'B']]), 

       BETWEEN(%0,1,2) AND %1='A') 
 

COL_1 COL_2 

2 A 
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4.9.2.2. GROUP(<input>, <groups>, <aggr>) 

 
Computes aggregates over groups of rows. At least one group or one aggregate must 
exists. If no groups are present, then the aggregates are computed over all the rows. 
 
Input: 
 

 input - input table 

 groups - optional list of zero-based grouping column indexes 

 aggr - optional list of aggregates 
o COUNT(ALL) : count of rows in the group 
o <aggr>(<col>) : compute <aggr> for column <col> in each group, 

where the aggregate can be: 
 COUNT : number of not-null values 

 MIN : minimum value 
 MAX : maximum value 
 SUM : sum of numeric values 

 AVG : average of numeric values 
o <aggr>(DISTINCT <col>) : same as before, but only considering the  

distinct values  
  
Output: 
 
If there are not grouping columns, one single row with a column for each aggregate 
computed over all the input rows. Otherwise, one row for each group with as many 
columns as grouping columns, and the aggregate columns. 
 
Examples: 
 
GROUP(VALUES([INT,STRING],[[1,'A'],[2,'A'],[3,'B']]), [1], 

      [COUNT(ALL), MAX(0), SUM(DISTINCT 0)]) 

 
 

COL_1 AGGR_1 AGGR_2 AGGR_3 

A 2 2 3 

B 1 3 3 

 
 

4.9.2.3. SORT(<input>, <columns>) 

 
Sorts the rows based on one or more sorting conditions. 
 
Input: 
 

 input - input table 

 columns - list of sorting columns, with the zero-based index and the optional 
sort order (ASC or DESC)  
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Output: 
 
The input rows sorted by the sorting criteria. 
 
Examples: 
 
SORT(VALUES([INT,STRING],[[1,'A'],[2,'A'],[3,'B']]), [1 DESC, 0]) 

 
 

COL_1 COL_2 

3 B 

1 A 

2 A 

 

4.9.2.4. EXTEND(<input>, <expressions>) 

 
Creates new columns for each row by evaluating expressions over its current content. 
 
Input: 
 

 input - input table 

 expressions - list of expressions to evaluate  
  
Output: 
 
For each input row, its current content plus the new columns with the result of the 
evaluation of the expressions. 
 
Examples: 
 
EXTEND(VALUES([INT],[[1],[2],[3]]), [%0 * 2, %COL_1 > 1]) 

 
COL_1 EXPR_1 EXPR_2 

1 2 FALSE 

2 4 TRUE 

3 6 TRUE 

 

4.9.2.5. DISTINCT(<input>) 

 
Returns the distinct rows in a table.  
 
Input: 
 

 input - input table 
  
Output: 
 
The distinct rows from the input table. 
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Examples: 
 
DISTINCT(VALUES([INT,STRING],[[1,'A'],[3,'B'],[1,'A']])) 

 
COL_1 COL_2 

1 A 

3 B 

 

4.9.2.6. UNION(<input1>, ..., <inputn>) 

 
Concatenates two or more compatible tables. Two tables are compatible if they have the 
same number of columns with matching data types for each column. 
 
Input: 
 

 inputi - an input table  
  
 
Output: 
 
All the rows of all the input tables 
 
 
Examples: 
 
UNION(VALUES([INT],[[1],[3]]),VALUES([INT],[[2]])) 

 
COL_1 

1 

3 

2 

4.9.2.7. PRODUCT(<left>, <right>) 

 
Cartesian product of two tables. 
 
Input: 
 

 left - left input table  

 right - right input table  
  
Output: 
 
The cartesian product between the rows of both inputs. Each output row has the 
columns of its left component plus the columns of its right component. 
 
Examples: 
 
PRODUCT(VALUES([INT,STRING],[[1,'A'],[2,'B']]),VALUES([INT],[[3],[4]])) 

 
LEFT_1 LEFT_2 RIGHT_1 
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1 A 3 

1 A 4 

2 B 3 

2 B 4 

 

4.9.2.8. JOIN(<left>, <right>, <condition>, <options>) 

 
A join is a selection over a cartesian product of two tables. 
 
Input: 
 

 left - left input table  

 right - right input table  

 condition - boolean join expression, the supported operands are: 

o  =, <>, <, <=, >, >= : comparison operators between two zero-
based column indexes (prefixed with a % character). 

o X AND Y : logical AND between X and Y 
o X OR Y : logical OR between X and Y 
o NOT X : negates X 
o (X) : evaluates X, it can be used to change the evaluation priorities 

 options - optional property map (for extensions such as semi-joins, join 
algorithm, etc.) 

  
Output: 
 
A selection of the rows of the cartesian product between the rows of both inputs. Each 
output row has the columns of its left component plus the columns of its right 
component. 
 
Examples: 
 
JOIN(VALUES([STRING,INT],[['A',1],['B',2]]), 

     VALUES([INT],[[3],[2]]),%1<%2,NULL) 

 
 

LEFT_1 LEFT_2 RIGHT_1 

A 1 3 

A 1 2 

B 2 3 

 
 

4.10. Parsing CloudMdsQL query plans to CQA query 
plans 

This section shows the procedure of converting from a CloudMdsQL query to a CQA 
query. For example, the following query accesses two data stores, one relational and 
another native (MongoDB). The result of both subqueries is then joined in a single result. 
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T1( a int, b string )@DB1 = ( SELECT a, b FROM tbl WHERE id > 100 ) 

T2( a int, c string )@DB2 = {* db.find( { id: 200 } ) *} 

SELECT T1.a, T1.b, T2.c 

FROM T1 JOIN T2 ON T1.a = T2.a 

 
The query plan represented in JSON is: 
 
{ 

   "sub": [ 

      { 

         "name": "t1", 

         "plan": { 

            "op": "TRANSFORM", 

            "plan": { 

               "op": "PROJECT", 

               "operands": [ 

                  { 

                     "op": "SELECT", 

                     "operands": [ 

                        { "op": "TABLEREF", "name": "tbl" } 

                     ], 

                     "filter": { 

                        "expr": "func", 

                        "function": ">", 

                        "operands": [ 

                           { "expr": "colref", "colref": [ "id" ] }, 

                           { "expr": "const", "datatype": "INT", "value": "100" } 

                        ] 

                     } 

                  } 

               ], 

               "columns": [ 

                  { 

                     "value": { "expr": "colref", "colref": [ "a" ] }, 

                     "name": "a" 

                  }, 

                  { 

                     "value": { "expr": "colref", "colref": [ "b" ] }, 

                     "name": "b" 

                  } 

               ] 

            }, 

            "datastore": "db1", 

            "signature": [ "INT", "STRING" ] 

         } 

      }, 

      { 

         "name": "t2", 

         "plan": { 

            "op": "NATIVE", 

            "datastore": "db2", 

            "code": " db.find( { id: 200 } ) ", 

            "signature": [ "INT", "STRING" ] 

         } 

      } 

   ], 

   "plan": { 

      "op": "PROJECT", 

      "operands": [ 

         { 

            "op": "JOIN", 

            "operands": [ 

               { 

                  "op": "PROJECT", 

                  "operands": [ 

                     { 

                        "op": "CALL", 

                        "sub": "t1" 
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                     } 

                  ], 

                  "columns": [ 

                     { 

                        "value": { "expr": "colref", "colref": [ "0" ] } 

                     }, 

                     { 

                        "value": { "expr": "colref", "colref": [ "1" ] } 

                     } 

                  ] 

               }, 

               { 

                  "op": "PROJECT", 

                  "operands": [ 

                     { 

                        "op": "CALL", 

                        "sub": "t2" 

                     } 

                  ], 

                  "columns": [ 

                     { 

                        "value": { "expr": "colref", "colref": [ "0" ] } 

                     }, 

                     { 

                        "value": { "expr": "colref", "colref": [ "1" ] } 

                     } 

                  ] 

               } 

            ], 

            "type": "INNER", 

            "condition": { 

               "expr": "func", 

               "function": "=", 

               "operands": [ 

                  { "expr": "colref", "colref": [ "0", "0" ] }, 

                  { "expr": "colref", "colref": [ "0", "1" ] } 

               ] 

            }, 

            "result": [ 

               { "expr": "colref", "colref": [ "0", "0" ] }, 

               { "expr": "colref", "colref": [ "1", "0" ] }, 

               { "expr": "colref", "colref": [ "0", "1" ] }, 

               { "expr": "colref", "colref": [ "1", "1" ] } 

            ] 

         } 

      ], 

      "columns": [ 

         { 

            "value": { "expr": "colref", "colref": [ "0" ] }, 

            "name": "a" 

         }, 

         { 

            "value": { "expr": "colref", "colref": [ "1" ] }, 

            "name": "b" 

         }, 

         { 

            "value": { "expr": "colref", "colref": [ "3" ] }, 

            "name": "c" 

         } 

      ] 

   } 

} 
 
The procedure to convert the query plan is: 
 

1. Identify all the dependencies from data stores: 
a. hierarchical dependencies (from the query tree) 
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b. from REFERENCING clauses 
2. From the data store dependencies, identify which ones will be cached into the 

Table Store, and those that will flow in the pipeline without caching 
3. Generate the CQA query. In particular: 

a. each native and non native query is a STREAM operator 
b. each Python query is a STREAM operator 
c. cached data stores are accessed through the STORE functions 

 
Thus, the sample query is translated into: 
 
LET @t1 = STREAM('native', 

                 [INT,STRING], 

                 ['db1',' 

     "plan": { 

                      "op": "TRANSFORM", 

                      "plan": { 

                        "op": "PROJECT", 

                        "operands": [ 

                            { 

                              "op": "SELECT", 

                              "operands": [ 

                                  { "op": "TABLEREF", "name": "tbl" } 

                              ], 

                              "filter": { 

                                  "expr": "func", 

                                  "function": ">", 

                                  "operands": [ 

                                    {"expr": "colref", "colref": [ "id" ] }, 

                                    {"expr":"const","datatype":"INT","value":"100"} 

                                  ] 

                              } 

                            } 

                        ], 

                        "columns": [ 

                            { 

                              "value": { "expr": "colref", "colref": [ "a" ] }, 

                              "name": "a" 

                            }, 

                            { 

                              "value": { "expr": "colref", "colref": [ "b" ] }, 

                              "name": "b" 

                            } 

                        ] 

                      }, 

                      "datastore": "db1", 

                      "signature": [ "INT", "STRING" ] 

                  }'], 

                 NULL), 

    @t2 = STREAM('native', 

                 [INT,STRING], 

                 ['db2',' 

                  "plan": { 

                    "op": "NATIVE", 

                    "datastore": "db2", 

                    "code": " db.find( { id: 200 } ) ", 

                    "signature": [ "INT", "STRING" ] 

                  }'], 

                  NULL) 

    IN RENAME(PROJECT( 

JOIN(@t1, @t2,%0=%0, NULL), 

                   [0,1,3]), 

             ['a','b','c']) 
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5. Wrappers: Query Engine interaction 
with the Data Stores 

 
A wrapper provides the interface that attaches a data store to the CloudMDS Query 
Engine (CQE). It handles fragments of the query plan that are intended for execution in a 
data store and delivers interim results in the appropriate format. 
 
Considering the diversity of data stores, their functionality is presented to the CQE using 
a JSON schema, which describes the query plan fragments that can be handled. These 
range from a simple native query string, opaque to the CQE, to supporting relational 
operations such as join and grouped aggregation, which are directly processed by the 
Operator Engine. The schema is a sub-set of the internal Query Plan schema described in 
section Appendix A.  

5.1. Rationale 
The wrapper API and implementations are based on the Java platform and conceptually 
similar to the standard JDBC interface, namely, regarding the usage of 
Driver/Connection/Statement objects to provide nested context for query execution, 
and a ResultSet to iterate over result data. 
 
This similarity helps wrapper developers as JDBC is expected to be the interface to many 
data stores or, at least, familiar to most wrapper developers. The wrapper interface 
differs from JDBC in three important aspects. First, in contrast to JDBC that is supposed 
to be useful to a wide range of client programs and thus offers different ways to 
accomplish the same goal, the wrapper API is much simpler. Second, as the only client to 
this API is the CQE, the wrapper focuses on performance, such as facilitating batch 
processing by operators. Finally, it has to provide access to named tables in the Table 
Store and to the Transactional Context. 
 

5.2. Wrapper architecture and interfaces 
The internal architecture of a wrapper and the interactions with the main CQE 
components are depicted in the following figure: 
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The main entry point to the wrapper is the DataStore interface, which provides 
Connection contexts for the execution of Statements. The query is received as a Java 
mapping of the JSON data model originating from the Query Stream. The Local 
Transaction Manager is exposed as a current Transaction Context and is then given 
write sets as opaque byte arrays. Interaction with the Table Store is, in both directions, 
through the ResultSet batch iterator interface. 
 
Classes and interfaces that compose the wrapper interface are grouped in four different 
packages briefly described in this section. A complete specification is available in 
Javadoc format with the source code. 
 

5.2.1. eu.coherentpaas.cqe.datastore 

This package contains the interfaces that must be implemented by each wrapper, 
namely: 

 DataStore: This represents an instance of a data store within the CQE. It is the 
main entry point into the wrapper. 

 Connection: This represents a single-threaded entry point to the data store. 
Therefore, different Connection instances are used for concurrent usage of the 
same data store. 

 Statement: This holds cached state for a query, that can be executed multiple 
times. 
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 DataStoreMetadata: Allows the CQE to query the data store for meta-data, for 
instance, the schema of returned data. 
 

5.2.2. eu.coherentpaas.cqe 

This package exposes CQE interfaces to the wrapper for services provided by or data 
exchanged with the CQE, namely: 

 ResultSet: Provides a batch iterator to retrieve data, in both directions, between 
the data store wrapper and the CQE. 

 TransactionalContext: Encapsulates the current holistic transactional context that 
is propagated from the CQE to the data stores. 

 NativeQueryPlan/TransformQueryPlan: Root classes for native and 
transformable query plans being sent to the wrapper. 
 

5.2.3. eu.coherentpaas.cqe.plan 

This package contains a mapping to Java of the query plan JSON schema using the Object 
Mapping feature of the Jackson JSON framework for Java. It is thus used to provide the 
wrappers with a convenient interface to receive query plans and, in particular, to 
transform them using the Visitor pattern. 
 

5.2.4. eu.coherentpaas.cqe.sqlgen 

This package contains a generic converter from transformable query plan fragments to 
SQL. It is thus useful only, even if not mandatory, for data stores that handle a SQL 
dialect. It is based on the eu.coherentpaas.cqe.plan package and the Visitor pattern. 
 

5.3. Common wrapper implementations 
By providing the wrapper a query plan fragment that respects a sub-set of the query 
plan JSON schema, the wrapper has a range of options for receiving queries and having 
them executed, as explained below. A wrapper can thus provide any of these 
alternatives, or even more than one of them simultaneously. 
 

5.3.1. Native query, client-side execution 

The wrapper specifies through JSON schema that it handles native queries (i.e., a JSON 
document that has a NATIVE node as root). The wrapper then uses an embedded script 
engine to handle these queries, exposing in the script language primitives for returning 
the results in the CQE data model. The query has thus a large amount of control on how 
the mapping is performed and makes this the preferred model for data stores with a 
significantly different data model that cannot be automatically mapped to relational 
data. 
This is depicted in the following Figure: 
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5.3.2. Native query, server-side execution 

The wrapper specifies through JSON schema that it handles native queries (i.e., a JSON 
document that has a NATIVE node as root). These queries are shipped to the data store 
for execution. The wrapper’s main task is to map results to the CQE data model, which 
has to be done after the query has run and without its intervention. This approach is 
appropriate, for instance, for non-standard SQL statements to be passed to a SQL data 
store. 
 

5.3.3. Transform query, custom interface 

In this case, the wrapper specifies through JSON schema that it handles a sub-set of 
transform query plans, such as table scans with filters  (i.e., a JSON document that has a 
TRANSFORM node as root). These plans are then interpreted in the wrapper, invoking 
data store interfaces. This approach is useful, for instance, for key-value stores with very 
simple data models and APIs that can do server-side filtering. 
 

5.3.4. Transform query, SQL interface 

The wrapper specifies through JSON schema that it handles transform query plans (i.e., a 
JSON document that has a TRANSFORM node as root). These plans are then converted to 
SQL statements using the eu.coherentpaas.cqe.sqlgen utility package sent for server-side 
execution in the data store. This approach is expected to be the preferred for SQL-like 
data stores and is depicted in the following Figure: 
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5.4. Operation 

5.4.1. Startup and shutdown 

A wrapper is configured in the CQE by providing the name of a class implementing 
eu.coherentpaas.cqe.datastore.DataStore, all required class path elements, and a 
properties file. The content of this file is not in any way examined by the CQE and the 
meaning of the property names and values is exclusively for use by the wrapper. 
The wrapper is started by the CQE, by creating an instance of this class and invoking the 
start method with the corresponding properties file. This instance is thus associated 
with an instance of the data store, as specified in a wrapper specific format in the 
properties file. It will remain valid until the CQE invokes the close method on the same 
instance, which should release all resources used by the wrapper. 
 

5.4.2. Connections and statements 

A data store instance is used through connections. Each connection is obtained with a 
getConnection method, used by a single thread, and returned to the wrapper by invoking 
the close method in the connection object. The CQE should assume that obtaining and 
releasing connection objects is a lightweight operation and is not expected to perform 
pooling. It is up to the wrapper implementation to ensure this, possibly by keeping a 
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connection pool itself, if this is considered necessary. For instance, for SQL-like 
databases this shouldn’t be necessary if the underlying JDBC driver itself does pooling. 
Connections can be used to prepare and execute one or more statements. Only one 
statement can be in execution at any given moment. Executing a second statement will 
cancel pending result sets, which will not return further data. Execution of a statement 
thus allows the following steps: 

 Optionally, invocations of useNamedTable method inform the wrapper that the 
next query should be allowed to use a named table, referred in an 
implementation specific manner by that name. This method provides a callback 
to be used later during execution to retrieve data from the Table Store. The 
callback is not valid when not currently invoking the execute method. 

 A mandatory invocation of prepare provides the query plan, that can be either a 
native or a transform fragment, according to what is supported by the wrapper. It 
optionally includes types and names of named parameters. 

 Optionally, invocations of set* methods provide values for named parameters 
referred to by the query plan. These are valid only for the next execution. 

 The invocation of execute starts execution, providing a transactional context to be 
relayed to the data store. It returns a result set to retrieve results, if any expected. 

 Results are retrieved with next methods. When no more data is required, the close 
method is invoked to release resources used for that query. 

 Finally, an invocation to getWriteSet obtains an opaque representation of the 
write set resulting from the execution, if any, that is relayed back to the 
transaction manager. 

It is expected that as much work as possible is done during the invocation of prepare, 
being reused for multiple invocations of execute. For instance, a SQL-like data store 
wrapper will convert the query plan to a SQL query and send it to the server for 
compilation, using a JDBC prepared statement. 
 

5.4.3. Named tables and parameters 

Parameters are described by the query plan and their values are supplied before 
execution. Regardless of the wrapper implementation, such as using an embedded 
client-side script engine or a server-side query language, there is some implementation 
dependent way to bind them to their values. For instance, in SQL this can be done with 
prepared statements. 
The same can be done for named tables when the query is executed in the client side. It 
requires only that the named table is exposed in a way that calls back into the wrapper 
to retrieve data, which is obtained from the Table Store through the Parameterized 
interface. 
This may be harder to accomplish for server-side execution, when the interface does not 
support callback. This is the case for JDBC and thus for SQL-like data stores. In this case, 
the wrapper can still do the following: When execute method is invoked and a named 
table is being used, the wrapper can download all data from the Table Store and upload 
it to a temporary table. After that, the execution proceeds with the appropriate data. 
Finally, after execution completes, temporary tables are dropped. 
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Appendix A. Query Plan JSON Schema 
 
This section contains the JSON schema as per draft 4 of http://json-schema.org, which 
describes the format of the query execution plan, produced by CloudMdsQL compiler 
and consumed by the execution engine. 
 
{ 

    "description": "Schema for the CoherentPaaS query execution plan", 

    "type": "object", 

    "required": [ "plan" ], 

    "properties": { 

        "name": { "type": "string" }, 

        "text": { "type": "string" }, 

        "sub":  { 

            "type": "array", 

            "items": { 

                "type": "object", 

                "required": [ "name", "plan" ], 

                "properties": { 

                    "name": { "type": "string"}, 

                    "params": { 

                        "type": "array", 

                        "items": { 

                            "type": "object", 

                            "required": [ "name", "datatype" ], 

                            "properties": { 

                                "name": { "type": "string" }, 

                                "datatype": { "$ref": "#/definitions/datatype" } 

                            } 

                        } 

                    }, 

                    "plan": { "$ref": "#/definitions/operation" } 

                } 

            } 

        }, 

        "plan": { "$ref": "#/definitions/operation" } 

    }, 

    "definitions": { 

        "operation": { 

            "type": "object", 

            "oneOf": [ 

                { "$ref": "#/definitions/call" }, 

                { "$ref": "#/definitions/project" }, 

                { "$ref": "#/definitions/select" }, 

                { "$ref": "#/definitions/aggregate" }, 

                { "$ref": "#/definitions/join" }, 

                { "$ref": "#/definitions/python" }, 

                { "$ref": "#/definitions/native" }, 

                { "$ref": "#/definitions/transform" }, 

                { "$ref": "#/definitions/tableref" } 

            ] 

        }, 

        "expression": { 

            "type": "object", 

            "oneOf": [ 

                { "$ref": "#/definitions/cref" }, 

                { "$ref": "#/definitions/const" }, 

                { "$ref": "#/definitions/param" }, 

                { "$ref": "#/definitions/func" } 

            ] 

        }, 

        "call": { 

            "type": "object", 

            "required": ["op", "sub"], 
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            "properties": { 

                "op": { "type": "string", "pattern": "CALL" }, 

                "sub": { "type": "string" }, 

                "params": { 

                    "type": "array", 

                    "items": { 

                        "type": "object", 

                        "required": ["name", "value"], 

                        "properties": { 

                            "name": { "type": "string" }, 

                            "value": { "oneOf": [ 

                                { "$ref": "#/definitions/const" }, 

                                { "$ref": "#/definitions/param" } 

                            ] } 

                        } 

                    } 

                } 

            } 

        }, 

        "project": { 

            "type": "object", 

            "required": ["op", "operands", "columns"], 

            "properties": { 

                "op": { "type": "string", "pattern": "PROJECT" }, 

                "operands": { "type": "array", 

                              "items": { "$ref": "#/definitions/operation" }, 

                              "minItems": 1, "maxItems": 1 }, 

                "columns": { 

                    "type": "array", 

                    "items": { 

                        "type": "object", 

                        "required": ["name", "value"], 

                        "properties": { 

                            "name": { "type": "string" }, 

                            "value": { "$ref": "#/definitions/expression" } 

                        } 

                    }, 

                    "minItems": 1 

                } 

            } 

        }, 

        "select": { 

            "type": "object", 

            "required": ["op", "operands", "filter"], 

            "properties": { 

                "op": { "type": "string", "pattern": "SELECT" }, 

                "operands": { "type": "array", 

                              "items": { "$ref": "#/definitions/operation" }, 

                              "minItems": 1, "maxItems": 1 }, 

                "filter": { "$ref": "#/definitions/expression" } 

            } 

        }, 

        "aggregate": { 

            "type": "object", 

            "required": ["op", "operands"], 

            "properties": { 

                "op": { "type": "string", "pattern": "AGGR" }, 

                "operands": { "type": "array", 

                              "items": { "$ref": "#/definitions/operation" }, 

                              "minItems": 1, "maxItems": 1 }, 

                "groupby": { "type": "array", "items": { "type": "integer" } }, 

                "aggregates": { 

                    "type": "array", 

                    "items": { 

                        "type": "object", 

                        "required": ["aggregate"], 

                        "properties": { 

                            "aggregate": { "enum": [ "COUNT_ALL", "COUNT", "SUM", 

                                                     "AVG", "MIN", "MAX" ] }, 

                            "colref": { "type": "integer" } 
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                        } 

                    } 

                } 

            } 

        }, 

        "join": { 

            "type": "object", 

            "required": ["op", "operands", "type"], 

            "properties": { 

                "op": { "type": "string", "pattern": "JOIN" }, 

                "operands": { "type": "array", 

                              "items": { "$ref": "#/definitions/operation" }, 

                              "minItems": 2, "maxItems": 2 }, 

                "type": { "enum": [ "INNER", "LEFT", "RIGHT", "FULL" ] }, 

                "condition": { "$ref": "#/definitions/expression" }, 

                "result": { "type": "array", 

                            "items": { "$ref": "#/definitions/cref" }, 

                            "minItems": 1 } 

            } 

        }, 

        "python": { 

            "type": "object", 

            "required": ["op", "code", "signature"], 

            "properties": { 

                "op": { "type": "string", "pattern": "PYTHON" }, 

                "code": { "type": "string" }, 

                "signature": { "type": "array", 

                               "items": { "$ref": "#/definitions/datatype" }, 

                               "minItems": 1 }, 

                "references": { "type": "array", "items": { "type": "string" } } 

            } 

        }, 

        "native": { 

            "type": "object", 

            "required": ["op", "datastore", "code"], 

            "properties": { 

                "op": { "type": "string", "pattern": "NATIVE" }, 

                "datastore": { "type": "string" }, 

                "code": { "type": "string" }, 

                "signature": { "type": "array", 

                               "items": { "$ref": "#/definitions/datatype" } }, 

                "references": { "type": "array", 

                                "items": { "type": "string" } } 

            } 

        }, 

        "transform": { 

            "type": "object", 

            "required": ["op", "datastore", "plan", "signature"], 

            "properties": { 

                "op": { "type": "string", "pattern": "TRANSFORM" }, 

                "datastore": { "type": "string" }, 

                "plan": { "$ref": "#/definitions/operation" }, 

                "signature": { "type": "array", 

                               "items": { "$ref": "#/definitions/datatype" }, 

                               "minItems": 1 } 

            } 

        }, 

        "tableref": { 

            "type": "object", 

            "required": ["op", "name"], 

            "properties": { 

                "op": { "type": "string", "pattern": "TABLEREF" }, 

                "name": { "type": "string" } 

            } 

        }, 

        "cref": { 

            "type": "object", 

            "required": ["expr", "colref"], 

            "properties": { 

                "expr": { "type": "string", "pattern": "colref" }, 
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                "colref": { "type": "array", 

                            "items": { "type": "string" }, 

                            "minItems": 1 } 

            } 

        }, 

        "const": { 

            "type": "object", 

            "required": ["expr", "datatype", "value"], 

            "properties": { 

                "expr": { "type": "string", "pattern": "const" }, 

                "datatype": { "$ref": "#/definitions/datatype" }, 

                "value": { "type": "string" } 

            } 

        }, 

        "param": { 

            "type": "object", 

            "required": ["expr", "name"], 

            "properties": { 

                "expr": { "type": "string", "pattern": "param" }, 

                "name": { "type": "string" } 

            } 

        }, 

        "func": { 

            "type": "object", 

            "required": ["expr", "function"], 

            "properties": { 

                "expr": { "type": "string", "pattern": "func" }, 

                "function": { "type": "string" }, 

                "operands": { "type": "array", 

                              "items": { "$ref": "#/definitions/expression" } } 

            } 

        }, 

        "datatype": { "enum": [ "STRING", "INT" ] } 

    } 

} 

 

 


