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1. Executive Summary 
 
CloudMdsQL (Cloud Multidatastore Query Language) is the common query language of 
CoherentPaaS. It is a functional SQL-like language, capable of querying multiple cloud 
data stores (SQL, NoSQL, HDFS, etc.) within a single query that contains embedded 
invocations to each data store’s native query interface. The query compiler parses a 
CloudMdsQL query and generates a query execution plan to be processed by the query 
operator engine. 
 
The final version of the compiler, presented in this deliverable, implements the full 
functionality for processing CloudMdsQL queries. The compiler parses a query first into 
an abstract syntax tree (AST), then it transforms the AST into a query execution plan 
(QEP), represented as a directed acyclic graph, where leaf nodes are references to 
named tables and all other nodes represent relational algebra operations. The output of 
the query compilation is the JSON serialization of the generated QEP, which is further 
handled by the common query engine. 
 
Upon decomposition of a SELECT query, each named table is mapped to a sub-plan, 
which is represented as a relational algebra tree, where the leaf nodes may be 
references to other named tables (for nested SQL sub-queries), references to data store 
tables (for named table expressions against SQL data stores), or native/Python 
expression definitions (for native/Python named table expressions). Further semantic 
analysis includes resolution of names of tables and columns and analyses of datatypes, 
cross-references, and WHERE clause predicates. The WHERE clause analysis may result 
in pushing selection operations down into the sub-plans for data stores, the 
executability of which is then validated against each data store’s capability specification. 
 
The compilation of data manipulation queries is also implemented. It allows for data, 
retrieved from one or more data stores, to be used for modification of data in one or 
more other data stores. Data manipulation queries make use of named action 
expressions to request modification of data in the data stores (e.g. insert, update, delete).  
 
This deliverable also evaluates the performance of the query compiler using a micro-
benchmarking that measures the duration of each phase of the compilation process for 
three queries of different complexity. 
 


