

CoherentPaaS
Coherent and Rich PaaS with a
Common Programming Model

ICT FP7-611068

Query Compiler
for the Common
Query v2 (Full
Functionality)

D3.6

<February, 2016>

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 2/26

Document Information
Scheduled delivery 24.02.2016
Actual delivery
Version 2.2
Responsible Partner INRIA

Dissemination Level:
RE Restricted

Revision History

Date Editor Status Version Changes
05.07.2015 B. Kolev Draft 0.1 Initial version
16.09.2015 B. Kolev Revised 1.0 Addressed internal reviewers

comments
28.01.2016 B. Kolev Revised 2.0 Addressed reviewers comments:

- Merged contents with D3.5
- Quality of deliverables

28.01.2016 Y. Zhang Reviewed 2.1 Added structure to the introduction
23.02.2016 M. Patiño Reviewed 2.2 Improved quality of the deliverable

Made the deliverable self-contained

Contributors
Boyan Kolev (INRIA), Patrick Valduriez (INRIA)

Internal Reviewers
Marta Patiño (UPM), Ying Zhang (MonetDB)

Acknowledgements
Research partially funded by EC 7th Framework Programme FP7/2007-2013 under
grant agreement n° 611068.

More information
Additional information and public deliverables of CoherentPaaS can be found at: http://
coherentpaas.eu

CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 6/26

1. Executive Summary

CloudMdsQL (Cloud Multidatastore Query Language) is the common query language of
CoherentPaaS. It is a functional SQL-like language, capable of querying multiple cloud
data stores (SQL, NoSQL, HDFS, etc.) within a single query that contains embedded
invocations to each data store’s native query interface. The query compiler parses a
CloudMdsQL query and generates a query execution plan to be processed by the query
operator engine.

The final version of the compiler, presented in this deliverable, implements the full
functionality for processing CloudMdsQL queries. The compiler parses a query first into
an abstract syntax tree (AST), then it transforms the AST into a query execution plan
(QEP), represented as a directed acyclic graph, where leaf nodes are references to
named tables and all other nodes represent relational algebra operations. The output of
the query compilation is the JSON serialization of the generated QEP, which is further
handled by the common query engine.

Upon decomposition of a SELECT query, each named table is mapped to a sub-plan,
which is represented as a relational algebra tree, where the leaf nodes may be
references to other named tables (for nested SQL sub-queries), references to data store
tables (for named table expressions against SQL data stores), or native/Python
expression definitions (for native/Python named table expressions). Further semantic
analysis includes resolution of names of tables and columns and analyses of datatypes,
cross-references, and WHERE clause predicates. The WHERE clause analysis may result
in pushing selection operations down into the sub-plans for data stores, the
executability of which is then validated against each data store’s capability specification.

The compilation of data manipulation queries is also implemented. It allows for data,
retrieved from one or more data stores, to be used for modification of data in one or
more other data stores. Data manipulation queries make use of named action
expressions to request modification of data in the data stores (e.g. insert, update, delete).

This deliverable also evaluates the performance of the query compiler using a micro-
benchmarking that measures the duration of each phase of the compilation process for
three queries of different complexity.

