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1. Executive Summary

This deliverable describes the holistic transaction management architecture. The
holistic transaction management provides a set of components that implement
transaction management: log, snapshot counter and conflict detection. These
components are decoupled so that they can be scaled-up independently. The holistic
transaction management implements snapshot isolation; therefore all data stores
accessed in a transaction need to provide multi-version data and write-write conflict
detection. The data stores either use their own log and functionality to redo
transactions, or provide the logging information to the holistic transaction management.
Applications can bracket transactions directly or through the common query language.
In both cases a proxy client to the transaction manager is used at the client side. At each
data store a local transaction manager must be deployed.



