Holistic
Transaction
Management

D4.6

September 2014




CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 1/22

Document Information

Scheduled delivery 30.09.2014
Actual delivery 24.10.2014
Version 1.0
Responsible Partner UPM

Dissemination Level:

PU Public

PP  Restricted to other programme participants (including the Commission)
RE Restricted to a group specified by the consortium (including the Commission)
Cco Confidential, only for members of the consortium (including the Commission)

Revision History

Date Editor Status Version Changes

14.09.2014 Ricardo Draft 0.1 Initial template
Jimenez

18.09.2014 Ivan Draft 0.2
Brondino

05.10.2014 Marta Draft 0.3
Patifio

18.10.2014 Ivan Draft 0.4 Peer reviews
Brondino

24.10.2014 Ricardo Draft 1.0 Final version
Jimenez

Contributors
Ricardo Jimenez-Peris
Ivan Brondino
Marta Patifio-Martinez

Internal Reviewers
Rui Oliveira
Angelos Bilas

Acknowledgements

Research partially funded by EC 7th Framework Programme FP7/2007-2013 under
grant agreement n® 611068.

More information

Additional information and public deliverables of CoherentPaaS$ can be found at: http://
coherentpaas.eu




CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model page 5/22

1. Executive Summary

This deliverable describes the holistic transaction management architecture. The
holistic transaction management provides a set of components that implement
transaction management: log, snapshot counter and conflict detection. These
components are decoupled so that they can be scaled-up independently. The holistic
transaction management implements snapshot isolation; therefore all data stores
accessed in a transaction need to provide multi-version data and write-write conflict
detection. The data stores either use their own log and functionality to redo
transactions, or provide the logging information to the holistic transaction management.
Applications can bracket transactions directly or through the common query language.
In both cases a proxy client to the transaction manager is used at the client side. At each
data store a local transaction manager must be deployed.



