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1. Executive Summary 
The	 X‐Ray	 subsystem	 aims	 at	 a	 fine‐grained	 analysis	 and	 real‐time	 visualization	 of	
performance	and	resource	usage	of	cloud	applications	deployed	on	CoherentPaaS.	This	
will	 enable	 the	 identification	 of	 each	 request,	 which	 software	 modules	 it	 uses,	 and	
associate	resource	usage	to	them.	In	particular,	it	will	allow	cloud	data	stores	to	provide	
detailed	 profile	 information	 about	 the	 executed	 queries	 such	 as	 their	 cost,	 selectivity,	
and	so	on.	

This	 document	 describes	 the	 design	 of	 the	 X‐Ray	 subsystem,	 focusing	 on	 the	 overall	
architecture	 and	 identifying	 the	 common	 data‐model,	 inter‐operability	 interfaces	 and	
protocols,	 and	 guidelines	 for	 data	 sources.	 It	 also	 describes	 how	 bytecode	 rewriting	
techniques	 play	 a	 key	 role	 in	 transforming	 Java	 cloud	 applications	 to	 analyse	 their	
performance	and	how	monitoring	information	can	be	stored	on	any	of	the	CoherentPaaS	
data	stores	to	perform	analytical	queries	over	it.	
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2. Introduction 
CoherentPaaS	aims	at	designing	and	 implementing	a	Platform‐as‐a‐Service	 (PaaS)	 that	
allows	access	a	wide	range	of	 services	and	data	store	 technologies	 in	 the	cloud.	These	
include	NoSQL‐data	stores	(key‐value	data	stores,	graph	data	stores,	document‐oriented	
data	 stores),	 SQL‐like	 scalable	 data	 stores	 (column‐oriented	 data	 stores,	 in‐memory	
databases,	SQL	databases)	as	well	as	Complex	Event	Processing	(CEP)	systems.	This	data	
will	be	available	in	a	unified	way	and	with	the	ability	to	use	a	query	language.		

This	platform	is	thus	inherently	heterogeneous,	with	components	from	multiple	sources,	
and	 distributed,	 to	 scale	 out	 and	 take	 advantage	 of	 cloud	 infrastructure.	 Both	 these	
characteristics	make	 it	 difficult	 to	monitor	 its	 operation.	Moreover,	 cloud	 applications	
and	services	tend	to	be	themselves	synthesized	out	of	multiple	components	and	libraries	
and	typically	service	providers	do	not	have	a	detailed	understanding	of	all	components.	

On	the	other	hand,	CoherentPaaS	is	focused	on	storing	and	processing	large	amounts	of	
data,	 thus	 providing	 the	 foundation	 for	 a	 more	 flexible	 monitoring	 system	 that	 can	
answer	 a	wider	 range	 of	 questions	 over	 the	 system	as	 a	whole.	The	X‐Ray	 subsystem	
addresses	 this	 challenge	 and	 exploits	 this	 opportunity,	 by	 providing	 the	 missing	 link	
between	the	monitored	system	and	the	data	storage	and	processing	 functionality	built	
into	the	CoherentPaaS	platform.	

The	 following	 sections	 discuss	 the	main	 issues	 in	 system	 and	 application	monitoring,	
existing	proposals,	providing	the	background	for	the	X‐Ray	subsystem	in	CoherentPaaS.	

2.1. Data sources (What to Monitor) 
In	 this	 section	 we	 discuss	 what	 information	 is	 relevant	 in	 application	 and	 systems	
monitoring,	 regardless	 of	 how	 it	 is	 collected	 and	how	 it	 is	 analysed	 or	 presented	 in	 a	
useful	 format	 to	 the	 end‐user.	 	 These	 data	 include	 hardware	 and	 system	 resources	
usage,	application	structure	and	events,	request	tracking,	as	well	as	the	relation	between	
different	sources.	

2.1.1. Hardware and system resources 

The	 main	 target	 for	 monitoring	 is	 usage	 of	 hardware	 resources	 such	 as	 CPUs,	 main	
memory,	disk	storage,	and	network.	This	information	is	often	only	statistically	accurate	
or	 machine/architecture‐specific.	 By	 running	 tests	 on	 other	 machines	 or	 simply	
considering	the	similarities	between	most	modern	computer	architectures,	it	is	possible	
to	obtain	global	valid	conclusions	about	an	algorithm	or	program.	Execution	times,	cache	
miss	rate,	percentage	of	failed	predicted	branch	jumps	are	platform‐dependent	metrics,	
as	 they	 directly	 depend	 on	 the	 underlying	 platform	 and	 so	 different	 results	 on	 some	
metrics	can	be	obtained	for	the	same	application.		

The	 usage	 of	 system	 resources,	 such	 as	 open	 file	 descriptors,	 threads,	 processes,	 and	
virtual	memory,	is	also	important	in	understanding	application	behaviour	for	debugging	
and	performance	evaluation.	The	JVM	in	the	Java	platform	adds	an	additional	layer	with	
resources	that	need	to	be	monitored.	In	particular,	the	usage	of	a	garbage	collector	adds	
substantial	 complexity.	 For	 instance,	 regarding	 the	 pauses	 introduced	 in	 normal	
application	 behaviour	 while	 unused	 memory	 is	 reclaimed,	 or	 how	 object	 life‐cycles	
match	 the	 expectations	of	 a	 generational	 garbage	 collection	mechanism.	Both	have	 an	
impact	in	application	performance		and	need	to	be	monitored.	
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2.1.2. Application events and state 
Application	events	are	exposed	mainly	as	text‐based	logs.	Each	event	is	thus	formatted	
by	application	code	as	a	text	 line	that	can	be	displayed	in	a	console,	recorded	to	a	text	
file	or	shipped	across	the	network	for	further	processing	and	storage.	The	information	in	
each	event	is	thus	application	specific	and	more	suited	for	humans	than	for	automated	
processing.	It	is	usually	annotated	with	a	detail	level	for	coarse	grained	filtering,	ranging	
from	 errors	 and	 warnings	 to	 debugging	 and	 tracing.	 More	 recently,	 the	 SLF4J	 and	
Logback	 frameworks	 (1)	 allow	 that	 log	 entries	 to	 be	 annotated	with	markers,	 to	 ease	
filtering,	 and	 with	 arbitrary	 key‐value	 pairs	 that	 describe	 event	 context,	 to	 allow	
chaining	 related	 events.	 This	 makes	 these	 events	 more	 amenable	 to	 automated	
processing.	

Applications	 can	also	expose	 the	usage	of	 their	 internal	 subsystems	with	 considerable	
detail,	 although	 in	 an	 application	 specific	 format.	 An	 example	 of	 this	 is	 how	database	
management	 systems,	 with	 a	 high	 level	 query	 languages	 such	 as	 SQL	 that	 allows	
alternative	execution	strategies,	show	how	queries	map	to	internal	code	modules.	This	
allows	 users	 to	 better	 understand	 what	 the	 actual	 actions	 the	 database	management	
system	 is	 performing.	 Examples	 of	 this	 are	 the	 EXPLAIN	 ANALYZE	 statement	 in	
PostgreSQL	and	MonetDB’s	Stethoscope	(2).	

2.1.3. Context and request identification 
A	key	issue	is	the	relation	between	code	elements	(methods,	 functions,	or	procedures)	
such	that	 it	 is	possible	to	visualize	how	an	action	is	composed	and	what	sub‐actions	 it	
executes.	 This	 is	 important	 because	 it	 allows	 a	 query	 execution	 plan	 to	 be	 produced	
similarly	to	how	a	relational	database	builds	 it,	even	if	not	by	a	direct	use	of	the	same	
algorithm,	by	applying	the	same	concepts	in	a	slightly	different	way	(3).		

This	 information	 can	 be	 collected	with	 different	 levels	 of	 detail.	 On	 one	 extreme,	 full	
information	of	the	methods	called	when	executing	a	program	can	be	collected,	obtaining	
a	 call	 tree.	 The	 call	 tree	 format	 allows	 the	 representation	 of	 all	 the	 original	 run	
information	 and	 includes	 as	 separated	 nodes	 different	 calls	 to	 the	 same	 function.	
Because	 of	 this,	 it	 can	 grow	 to	 a	 large	 size,	 especially	 if	 one	 considers	 cases	 of	 call	
recursion.	The	detailed	context	present	can	also	be	unnecessary	if	the	distinction	of	calls	
can	be	inferred	or	is	not	important.		

In	the	other	extreme	is	the	(dynamic)	call	graph.	This	structure	uses	one	and	only	node	
to	 represent	 a	 function,	 independently	 of	 the	number	 of	 times	 or	 different	 contexts	 it	
was	called.	So	although	compact,	it's	difficult	to	extract	meaningful	information	from	the	
nodes,	as	context	is	lost	and	metrics	associated	with	each	function	call	are	lumped	in	a	
node.		

The	context	calling	tree	(CCT)	is	a	compromise	between	these	two	formats	(3).	It	groups	
together	several	method	invocations	in	the	same	node	if	and	only	if	they	share	the	same	
context	 ‐	 meaning	 that	 the	 invoked	 method	 is	 the	 same,	 and	 their	 parent	 trees	 are	
equivalent.	These	trees	can	also	be	called	dynamic	context	calling	trees	when	they	are	
constructed	from	a	run,	as	it	normally	happens,	due	to	the	fact	that	static	calculation	of	
all	possible	call	relations	is	a	hard	problem.		

2.2. Data collection (How to Monitor) 
Some	 forms	 of	 collection	 may	 be	 more	 suitable	 for	 obtaining	 some	 metrics	 while	
inefficient	 for	 others.	 Besides	 the	 ease	 of	 use	 and	 the	 quantity	 and	 quality	 of	 the	



CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model                                     page	9/23 

	

obtained	 information,	we	 should	 consider	 the	 inconvenience	 and	 overhead	 caused	 by	
the	 data	 collection.	 Here	 we	 can	 distinguish	 between	 application	 runtime	 overhead,	
application	modification	overhead	and	cognitive	overhead,	if	the	changes	to	implement	
are	not	straightforward	or	require	us	to	change	how	we	rationalize	the	problem.		

Generally	 speaking,	 three	 approaches	 to	 data	 collection	 can	 be	 employed:	 using	
hardware	aid;	using	existing	software	to	assist	the	debugging	(usually	leveraging	on	the	
existing	 host	 JVM	 or	 OS	 functionalities)	 or	 altering	 the	 program	 to	 collect	 them.	 	 In	
distributed	systems,	there	is	the	additional	issue	of	consistent	observation.	

2.2.1. Hardware and platform assisted 

Hardware	 performance	 counters,	 or	 simply	 hardware	 counters,	 are	 special‐purpose	
registers	 built	 into	 modern	 microprocessors	 to	 store	 the	 counts	 of	 hardware‐related	
activities,	 such	 as	 cache	misses,	 branch	mispredictions	 or	 number	 of	 cycles	 executed.	
These	 counters	 can	be	used	 to	 conduct	 low‐level	performance	analysis	or	 tuning	with	
very	low	overhead,	especially	when	compared	to	software	instrumentation	(3)	(4).	

The	number	of	available	hardware	counters	in	a	processor	is	limited	and	not	all	useful	
information	can	be	kept.	So	it	is	necessary	to	conduct	multiple	measurements	to	collect	
the	desired	metrics	or	to	continuously	collect,	process,	and	save	this	data.	The	types	and	
meanings	of	hardware	counters	vary	from	one	kind	of	architecture	to	another	due	to	the	
variation	 in	 hardware	 organizations	 so	 they	 cannot	 be	 relied	 upon	 as	 a	 universal	
solution.	Lastly,	 it	can	be	difficult	to	correlate	 low	level	performance	metrics	to	source	
code	or	application	level.	

The	operating	system	collects	a	 large	amount	of	useful	 information	about	applications,	
either	 for	 its	 own	 usage	 such	 as	 maintaining	 a	 fair	 allocation,	 or	 because	 it	 is	 in	 a	
privileged	 position	 to	 do	 so.	 Another	 key	 role	 of	 the	 operating	 system	 is	 to	 virtualize	
hardware	 counters	 such	 that	 multiple	 applications	 can	 exploit	 them	 concurrently.	
Information	 collected	 by	 the	 operating	 system	 can	 be	 exposed	 through	 a	 system‐call	
interface,	a	device	interface,	or	a	file‐system	interface.	

Likewise,	 the	 Java	Virtual	Machine	(JVM)	collects	 information	about	resource	usage	by	
Java	 applications.	 This	 includes	 the	 heap,	with	 information	 on	 garbage	 collection,	 and	
threads.	This	information	is	in	current	versions	made	available	mainly	through	managed	
beans	 (MBeans)	 according	 to	 the	 Java	 Management	 Extensions	 (JMX)	 specification.	
These	objects	represent	resources	to	be	managed	providing	both	attributes	that	can	be	
periodically	queried,	thus	extracting	a	time	series,	or	events	source	that	can	be	listened	
upon.	

2.2.2. Code instrumentation 

Instrumentation	 is	 the	 act	 of	 altering	 program	 behaviour	 by	 adding	 the	 ability	 to	
measure	or	know	some	information	when	they	are	run.	This	can	be	done	by	developers	
in	 the	 source	 code	 and	 is	 eased	 by	 frameworks	 that	 reduce	 the	 effort	 involved	while	
improving	interoperability	with	different	processing	and	analysis	tools.	

The	 form	 of	 instrumentation	 that	 is	 most	 used	 in	 the	 Java	 platform	 is	 logging	 of	
significant	events.	This	 is	supported	by	frameworks	such	as	Log4J	that	allows	the	end‐
user	to	filter	events	based	on	program	module	and	level	of	detail,	while	configuring	the	
log	format	and	its	final	destination.	More	recently,	there	has	been	a	growing	interest	in	
reducing	the	overhead	of	logging	operations	by	avoiding	text	formatting	for	events	that	
have	been	disabled	at	run‐time	(1).	
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The	Java	platform	supports	source	code	instrumentation	also	with	the	Java	Management	
Extensions	(JMX)	specification	by	describing	data	exposed	as	managed	beans	(MBeans).	
These	can	be	queried	by	the	same	tools	that	consume	platform	information	through	JMX.		

Even	 though	 the	 programmer	 can	 insert	 instrumentation	 manually,	 it	 is	 more	
convenient	to	have	it	inserted	automatically	by	tools.	This	can	be	done	statically,	in	one	
occasion,	or	dynamically,	every	time	the	program	is	loaded	or	when	instrumentation	is	
required.	 Generally,	 the	 source	 code	 is	 not	 necessary,	 but	 it	 can	 be	 needed	 to	 aid	 the	
instrumentation	effort,	depending	on	the	complexity	of	the	application	and	the	intended	
analysis.	The	overhead,	while	acceptable,	is	not	negligible	(4).		

The	 architecture	 of	 the	 instrumenter	 can	 also	 be	 very	 diverse.	 It	 can	 be	 a	 simple	
program	that	alters	an	application	or	it	can	be	part	of	a	modular	system	capable	of	being	
extendible	 with	 a	 wide	 range	 of	 plug‐ins	 or	 similar	 tools.	 Examples	 of	 monitoring	 or	
tracing	 software	 that	 use	 instrumentation	 include	 the	 venerable	 gprof,	 Intel's	 Pin	 (5),	
DTrace	(6)	and	SystemTap	(7),	valgrind	(8)	and	its	tools,	such	as	memcache,	callgrind,	
and	Google's	Flayer	(9).	

Nowadays,	 most	 high‐level	 programming	 languages	 provide	 reflection	 capabilities.	
Reflection	 allows	 a	 program	 or	 application	 to	 change	 its	 behaviour	 at	 runtime.	 In	
particular,	for	object	oriented	programming	languages,	reflection	enables	changes	to	the	
behaviour	 or	 data	 structures	 of	 objects	 at	 runtime.	 Python	 and	Ruby	 are	 examples	 of	
languages	that	support	reflection	and	can	use	it	to	insert	instrumentation.	

For	 the	particular	case	of	 Java	applications,	 there	various	solutions	specific	 to	 the	 JVM	
(Java	Virtual	Machine),	as	the	JVM	abstracts	away	many	platform	and	hardware	details	
and	 provides	 some	 functionalities	 that	 enable	 it,	 like	 Java	 Agents,	 instrumentation	
interfaces,	custom	class	loaders	and	JVM	TI.	Java	bytecode,	the	instrumentation	target,	is	
also	a	relatively	simple	and	high	level	target	when	compared	to	assembly.	Examples	of	
tools	 that	 take	 advantage	 of	 these	 features	 include	 jp2	 (10),	 JBInsTrace	 (11)	 and	 the	
systems	described	in	(12)	and	(13).	

An	 extreme	 example	 of	 automated	 code	 instrumentation	 by	 bytecode	manipulation	 is	
provided	 by	Minha	 (14)	 (15).	 By	 intercepting	 all	 synchronization	 and	 communication	
primitives,	 it	 virtualizes	 multiple	 JVM	 instances	 in	 each	 JVM	 while	 simulating	 key	
environment	components,	reproducing	the	concurrency,	distribution,	and	performance	
characteristics	of	a	much	larger	distributed	system.	This	enables	fine	grained	tracking	of	
requests	in	a	distributed	system	and	consistent	global	observation.	

2.2.3. Distributed monitoring 

Monitoring	 distributed	 systems	 raises	 the	 issue	 of	 consistent	 observation.	 Briefly,	 as	
communication	 is	 asynchronous	 and	 clocks	 on	 different	 nodes	 are	 not	 necessarily	
synchronized,	a	naïve	monitor	 that	builds	global	observations	of	 the	system,	 including	
data	from	multiple	nodes,	might	observe	paradoxical	states	(16).		This	can	be	solved	by	
causally	ordering	monitoring	messages	such	that	observations	correspond	to	consistent	
snapshots.	However,	observing	transient		states	 requires	 that	 the	monitor	 reconstructs	
different	 sequential	 orders	 of	 events	 and	 might,	 in	 the	 end,	 not	 be	 able	 to	 definitely	
assess	if	some	state	actually	existed	in	the	system.	

Another	 issue	 with	 distributed	 systems	 is	 handling	 the	 sheer	 amount	 of	 monitoring	
events	generated,	as	any	event	can	potentially	be	related	to	any	other.	This	means	that	
the	 infrastructure	 needed	 to	 aggregate	 and	 process	 events	 becomes	 a	 challenge.	 An	
example	of	a	logging	structure	is	EV‐Path	(17),	a	middleware	infrastructure	that	extends	
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a	 publish‐subscribe	 system.	 It	 offers	 the	 flexibility	 needed	 to	 support	 the	 varied	 data	
flow	 and	 control	 needs	 of	 alternative	 higher‐level	 streaming	 models.	 Others	 include	
Netlogger	(18)	and	WebLogic	Event	Server	(19).	This	is	also	addressed	by	tools	such	as	
Fluentd	(20),	which	aggregate	text‐based	logs	and	allow	storage	and	processing	with	the	
Hadoop	(21)	tools.	

Finally,	request	tracking	across	distributed	systems	presents	additional	challenges.	This	
is	addressed	by	PreciseTracer	(21),	a	tool	that	regards	distributed	components	as	black	
boxes	 and	 follows	 requests	 as	 they	 are	 passed	 between	 components	 and	 save	
information	in	a	per‐request	structure.	This	analysis	is	made	on	line	and	on	demand	as	
the	logged	system	and	the	logger	nodes	are	running	without	the	need	to	stop	neither.	
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Figure	1	Architecture	overview	

X-Ray Capture

log
files

J
M
X

X-Ray Analysis and Visualisation

J
M
X

S
L
F
4
J

Exporter

X-Ray Storage and Processing

DB

Analysis
Library

Hypervisor

OS

Bytecode
Instrumentation

log4j
bridge

S
L
F
4
J

Importer

Event
spooler

Application w/ 
legacy instr.

(Java)

Application
w/ legacy instr.
(C/C++/...)

logging
API

OS Agent

JVM Agent

HV Agent

Application
(Java)

Sink
Data store

Other
Data stores

CQE

CEP

Multi data store
analysis

Real-time
analisys

Visualizations

Data
store

Data
store

Data
store



CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model                                     page	13/23

	

3. Architecture 
The	X‐Ray	subsystem	focus	on	improving	the	 information	that	 is	generated	using	code	
instrumentation	and	using	the	CoherentPasS	data	stores	and	common	query	engine	for	
processing	monitoring	 data.	 The	 delivery	 of	 a	 fully	 self‐contained	 prototype	 requires	
that	a	complete	monitoring	architecture	is	proposed	and	implemented.	

Figure	1	shows	an	overview	of	the	proposed	X‐Ray	Subsystem	architecture.	It	assumes	
distributed	 applications	 with	 components	 in	 multiple	 servers,	 virtual	 hosts,	 and	 Java	
virtual	 machines.	 These	 applications	 generate	 monitoring	 events	 through	 the	 X‐Ray	
Capture	layer	to	the	X‐Ray	Storage	and	Processing	layer,	to	be	used	in	the	X‐Ray	Analysis	
and	 Visualization	 layer.	 Label	 icons	 identify	 the	 main	 configuration	 points	 for	 the	
system.	

Note	that	the	CoherentPaaS	platform	and	the	data	stores	have	two	different	roles	in	this	
architecture.		First,	they	are	the	mechanism	used	to	store	and	process	monitoring	data.	
Second,	they	are	the	monitoring	target	while	being	used	by	applications,	requiring	that	
an	adequate	configuration	of	the	Capture	layer	is	provided	and	can	easily	be	enabled	by	
system	operators.	

The	following	sections	briefly	describe	the	components	and	interactions	in	each	of	them.	

3.1. Capture 
The	objective	of	the	capture	module	is	to	obtain	information	from	application	programs	
and	resources	used,	through	a	variety	of	means	and	sources,	and	providing	it	to	the	next	
stage.	This	includes	the	following	main	components:	

Bytecode	instrumentation	Tools	for	dynamically	modifying	compiled	Java	bytecode	
to	 insert	 request	 context	 maintenance	 and	 propagation	 and	 software	 monitoring	
probes.	This	can	be	complemented	by	manually	inserted	logging	code	in	application	
components	 targeting	 SLF4J.	 This	 is	 one	 of	 the	 main	 configuration	 points,	 where	
software	structure	is	described	to	the	monitoring	platform.	

JVM,	OS,	and	HV	Agents	Tools	 for	monitoring	 resources	used	at	different	 levels	of	
abstraction.	

Event	 spooler	 Middleware	 layer	 for	 enriching	 events	 with	 additional	 information,	
namely,	that	aids	in	correlating	different	event	sources	from	the	same	component	or	
from	multiple	 components	 in	 different	 servers,	 and	 directing	 them	 to	 storage	 and	
processing	stage.	

Support	 for	application	components	that	already	have	relevant	monitoring	capabilities	
built	on	 logging	 frameworks	or	 JMX,	or	application	 components	 that	are	not	based	on	
the	Java	platform,	is	achieved	with	the	following	component:	

Importer	 Extracts	 information	 from	 textual	 log	 messages,	 producing	 monitoring	
events.	This	is	a	main	configuration	point,	where	legacy	software	is	described	to	the	
monitoring	platform.	These	messages	originate	from	multiple	sources:	

 From	 textual	 log	 files	 produced	 by	 application	 components	 using	 their	 native	
logging	mechanism.	

 From	log	messages	produced	by	text‐based	Java	logging	frameworks	(e.g.,	log4j)	
captured	using	a	bridge.	
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 From	log	messages	produced	by	text‐based	logging	frameworks	outside	the	Java	
platform.	

The	 preferred	 scenario	 for	 the	 capture	module	 is	 an	 application	 in	 the	 Java	 platform	
where	monitoring	is	added	using	bytecode	instrumentation	to	direct	events	through	the	
SLF4J	interface	to	the	event	spooler,	while	resource	consumption	is	monitored	by	agents	
at	different	levels.	

3.2. Storage and processing 
This	module	leverages	an	instance	of	the	CoherenPaaS	stack	as	mechanism	for	storage	
and	processing	monitoring	data	as	follows:	

Sink	Data	store	A	database	engine	optimized	for	throughput	and	accommodating	the	
variable	 information	contained	in	events	(NoSQL).	Applications	can	make	direct	use	
of	this	data	and	native	processing	capabilities.	

Other	Data	stores	Database	engine	holding	intermediate	information	resulting	from	
event	 processing	 in	 the	 CQE	 and	 CEP	 engines,	 optimized	 for	 their	 processing	
operations.	 Applications	 can	 make	 direct	 use	 of	 this	 data	 and	 native	 processing	
capabilities.	

CQ	 Engine	 The	 common	 query	 engine	 orchestrates	 and	 performs	 computations	
across	data	stored	in	multiple	database	engines.	

CEP	 Engine	 The	 complex	 event	 processing	 performs	 real‐time	 processing	 of	
monitoring	 events,	 making	 use	 of	 database	 engines	 through	 the	 CQE	 for	 historical	
data.	

Analysis	Library	A	set	of	general	purpose	analysis	procedures	that	can	be	applied	to	
monitoring	 data.	 Mainly,	 this	 is	 concerned	 with	 request	 tracking	 across	 software	
modules	and	distributed	components.	

The	storage	and	processing	component	assumes	that	minimal	pre‐processing	or	filtering	
has	been	done,	namely,	by	the	Event	Spooler.	The	entry	points	to	a	Sink	Data	Store	or	the	
CEP	Engine	are	 thus	optimized	for	 throughput.	 If	manipulation	and	 filtering	on	arrival	
are	 required,	 these	 are	 done	 in	 the	 CEP	 Engine,	 directing	 the	 results	 to	 any	 database	
engine.	

3.3. Analysis and visualization 
The	 analysis	 and	 visualization	 layer	 is	 directly	 visible	 to	 end‐users,	 focusing	 on	
monitoring	policy.	It	includes:	

Real	 time	 analysis	 Defines	 data	 transformation	 in	 terms	 of	 complex	 event	
processing	operations.	This	is	one	of	the	main	configuration	points,	where	extracted	
information	is	defined.	

Multi‐data	store	analysis	Defines	data	 transformation	 in	 terms	of	 single	 or	multi‐
database	 query	 languages.	 This	 is	 one	 of	 the	 main	 configuration	 points,	 where	
extracted	information	is	defined.	

Exporter	 Exposes	 data	 stored	 and	 computed	 using	 standard	 JMX	 and	 SLF4J	
interfaces	to	chain	to	existing	monitoring	and	visualization	systems.	

Visualization	 applications	 Expose	 data	 stored	 and	 computed	 to	 end‐users,	 thus	
providing	a	self‐contained	proof‐of‐concept	of	the	monitoring	system.	
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4. Design issues 
This	 section	 discusses	 design	 issues,	 namely,	 the	 common	 data‐model	 for	monitoring	
data,	inter‐operability	interfaces	and	protocols,	and	guidelines	for	data	sources.	

4.1. Common data-model 
The	X‐Ray	platform	will	use	 the	CloudMdsQL	data	 types	as	 specified	 in	Appendix	A	of	
D3.1,	 as	 these	 are	 already	 mapped	 to	 data	 stores	 considered	 in	 the	 project	 and	 are	
sufficiently	generic	 for	a	wide	range	of	applications.	They	include	simple	data	types	as	
well	 as	 arrays	 and	 dictionaries.	 Moreover,	 a	 mapping	 between	 these	 data	 types	 and	
those	allowed	in	JMX	(22)	will	be	provided.	

4.2. Interoperability interfaces 
Regarding	data	capture,	the	main	interoperability	interfaces	that	allow	taking	advantage	
of	existing	instrumentation	are:	

 JMX	 is	 used	mainly	 for	 reading	 property	 values	 that	 are	monitored	 by	 existing	
systems,	and	also	for	capturing	events	where	available.	

 SLF4J	 is	used	for	events,	 taking	advantage	of	existing	 legacy	bridges	(e.g.,	 log4j‐
over‐slf4j)	to	capture	log	messages	associated	with	them.	

For	data	storage	and	processing,	the	main	interoperability	interface	is	CloudMdsQL,	the	
CoherentPaaS	common	query	language	as	defined	in	D3.1.		

Resulting	data	is	exported	to	third	party	tools	mainly	through	the	following	interfaces:	

 JMX	 is	 used	 for	 exposing	 values	 stored	 in	 any	 of	 the	 supported	 data	 stores	 as	
properties	and	results	from	complex	event	processing	as	event	notifications.	

 SLF4J	is	used	for	periodically	logging	values	stored	in	any	of	the	supported	data	
stores	or	results	from	complex	event	processing	as	event	notifications.	

By	relying	on	these	interfaces,	compatibility	with	a	wide	range	of	tools	is	achieved.	First,	
most	management	tools	already	support	JMX,	even	if	they	are	not	dedicated	to	the	Java	
platform.	With	SLF4J,	backends	such	as	Log4J	and	Logback	can	be	used	to	locally	record	
data	or	to	ship	it	to	repositories	over	the	network.	

4.3. Data source definition 
The	main	interface	for	definition	of	data	sources	is	by	specifying	the	instrumentation	to	
be	inserted	in	Java	code,	using	three	different	formats:	

 Annotations	 inserted	 in	 the	 Java	 code	 by	 the	 developer	 to	 delimit	 logical	 code	
units	and	their	interactions.	

 An	external	definition	file	that	can	be	used	in	alternative	to	annotations	to	delimit	
logical	code	units	and	their	 interactions,	when	source	code	is	not	available	or	 it	
should	not	be	changed.	

 External	 configuration	 files	 that	 select	 what	 annotations	 and	 definitions	 are	
actually	enabled	and	translated	into	active	instrumentation	code,	while	directing	
the	output	to	the	event	spooler.	

Data	imported	from	legacy	data	sources	is	specified	in	two	different	ways:	



CoherentPaaS: Coherent and Rich PaaS with a Common Programming Model                                     page	16/23

	

 Designating	 JMX	 attributes	 to	 be	 queried	 or	 events	 to	 be	 listened.	 These	 are	
converted	to	the	internal	data	model	using	the	JMX	mapping	and	sent	to	the	event	
spooler.	

 Designating	SLF4J	 loggers	as	 legacy	event	 sources,	by	associating	 them	with	an	
appender	 that	parses	them	using	a	supplied	regular	expression	and	sending	the	
resulting	data	to	the	event	spooler.		
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5. Implementation issues 
This	section	discusses	 implementation	 issues,	namely,	how	existing	software	packages	
can	 be	 used	 as‐is	 or	 with	 some	 modification	 as	 building	 blocks	 in	 the	 proposed	
architecture.	

5.1. Bytecode instrumentation 
Inserting	 instrumentation	 in	 Java	 bytecode	 is	 now	widely	 used	 for	multiple	 purposes	
and	 is	 supported	 by	 a	 variety	 of	 tools.	 This	 project	 will	 leverage	 ObjectWeb’s	 ASM	
library	(23)	for	bytecode	manipulation	given	its	 low	level	and	flexibility,	 in	addition	to	
the	reduced	overhead	allowed	by	its	stateless	operation	based	on	the	visitor	pattern.		

There	 are	 also	multiple	 third‐party	 add‐ons	 to	 ASM	 that	 provide	 useful	 functionality,	
namely,	 the	 native‐intercept	 library	 (25)	 allows	 seamless	 handling	 of	 native	methods	
implemented	in	C/C++	according	to	the	JNI	specification.	

Inserted	 instrumentation	 collects	 information	 using	 SLF4J	 and	 the	Mapped	Diagnostic	
Context	(MDC).	However,	in	contrast	to	the	simple	instrumentation	currently	allowed	by	
bare	SLF4J	that	can	only	log	method	entry	and	exit,	X‐Ray	will:	

 Allow	collections	in	context	information.	

 Allow	 context	 to	 be	 associated	with	 objects	 and	 user‐defined	modules,	 besides	
threads.	

 Allow	a	fine	grained	definition	of	context	propagation	between	threads,	objects,	
and	modules.	

 Allow	recording	data	in	method	parameters,	return	values,	and	object	fields.	

The	project	will	 also	make	use	 of	 the	 java.lang.Instrumentation	 interface	 for	 attaching	
the	monitoring	tool	to	a	 JVM,	allowing	instrumentation	to	be	dynamically	 inserted	and	
removed	in	a	running	application.	

5.2. Resource agents 
Resource	agents	for	the	Java	platform	make	use	of	the	JMX	interface,	which	exports	all	
relevant	information	from	the	JVM	in	a	portable	way.	

For	the	operating	system,	to	cope	with	a	diversity	of	platforms,	resource	agent	uses	the	
SIGAR	 library	(24).	This	 library	collects	all	 relevant	 information	 in	all	major	operating	
system	platforms	and	can	already	expose	it	through	JMX.	

5.3. Event handling 
The	event	spooler	is	implemented	as	a	physically	distributed	system,	with	independent	
instances	 attached	 to	 different	 applications	 and	 communicating	 directly	with	 the	 data	
stores.	 Since	 it	 is	 to	 be	 implemented	 as	 an	 SLF4J	 backend,	 it	 can	 leverage	 existing	
backends.	 In	 particular,	 Logback	 fully	 implements	 Mapped	 Diagnostic	 Context	 (MDC)	
and	allows	target	data	stores	to	be	easily	integrated.	Moreover,	it	provides	the	ability	to	
extensively	 filter	 data	 collection	 based	 on	 detail	 level,	 software	 components,	 and	
abstract	markers.	
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The	implementation	of	the	Importer	requires	that	text	 in	 log	messages	 is	processed	to	
extract	 structured	 information.	 This	 can	 be	 done	 by	 describing	 text	 structure	 with	
patterns	and	regular	expressions	with	a	tool	like	libgrok	(25).		

The	 Exporter	 to	 JMX	 is	 implemented	 using	 a	 configuration	 mechanism	 and	 Dynamic	
MBeans,	to	expose	information	resulting	from	processing.	Likewise,	exporting	to	SLF4J	
requires	 only	 a	 configuration	 mechanism	 to	 map	 events	 to	 formatting	 templates,	
parameters,	markers,	and	context.	
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6. Example 

	
Figure	2	Example	of	target	visualization.	
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As	 an	 example,	 consider	 an	 application	 that	 uses	 the	 Derby‐based	 Distributed	 Query	
Engine	 (DQE)	 and	 native	HBase	 through	 the	 Common	Query	 Engine.	 Assume	 that	 the	
following	 instrumentation	 has	 been	 defined	 by	 developers	 of	 each	 component	 and	
enabled	by	the	system	operator:	

 Logging	of	entry	and	exit	to	each	operator	in	the	C++	implementation	of	the	CQE,	
done	by	manually	modifying	the	code.	

 Logging	 of	 client	 context	 and	 network	 connections	 in	 the	 DQE	 and	 HBase	
wrappers,	as	well	as	in	the	DQE	HBase	scan	operators.	

 Bytecode	instrumentation	of	all	operator	classes	in	DQE,	defined	on	their	abstract	
interface	at	the	root	of	the	class	hierarchy.	

 Bytecode	instrumentation	of	HBase	servers,	defined	on	the	interface	exposed	to	
clients.	

Figure	2	shows	the	what	information	is	obtained	when	applying	X‐Ray	to	the	execution	
of	 an	 CloudMdsQL	 query	 that	 joins	 the	 result	 of	 a	 SQL	 query,	 running	 on	 the	 Derby‐
based	Distributed	Query	Engine	(DQE)	and	a	native	HBase	table	scan.	The	information	
provided	includes:	

 Internal	program	structure	of	 the	CQE	and	DQE,	depicting	how	execution	units	
are	assembled	in	an	execution	plan.	

 Grouping	 according	 to	 larger	 program	 structure,	 that	map	 to	 operation	 system	
processes	and	resource	consumption	on	actual	hardware	components.	

 Detailed	information	depending	on	the	component	being	observed,	such	as	rows	
for	DQE	operators	and	get/put/scan	operations	on	HBase.	

 When	detailed	logging	of	method	results	is	possible,	a	histogram	of	actual	values	
can	be	computed	and	displayed.	

 All	 this	 information	 can	 be	 obtained	 for	 an	 individual	 request	 as	 well	 as	
aggregated	over	a	period.	
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7. Road map 
 2014	Q2	Preliminary	bytecode	instrumentation.	

 2014	 Q3	 Capture	 components,	 including	 bytecode	 instrumentation,	 resource	
agents,	and	event	spooler.	

 2015	Q1	Exporters	and	instrumentation	of	CoherentPaaS	data‐stores.	

 2015	Q3	Analysis	components,	including	distributed	request	tracking.	
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