

CoherentPaaS
Coherent and Rich PaaS with a
Common Programming Model

ICT FP7-611068

Use Cases
Design

D9.2

September 2014

CoherentPaaS: Use Cases Design page 2/95

Document Information
Scheduled delivery 30.09.2014
Actual delivery 24.10.2014
Version 1.0
Responsible Partner Neurocom

Dissemination Level:
PU Public

Revision History

Date Editor Status Version Changes
15.06.2014 Vassilis Spitadakis Draft 0.1 Draft Table of Contents
5.9.2014 Raquel Pau, Luis

Cortesao
Draft 0.2 Input by Sparsity, INRIA and

PTIN
9.9.2014 Vassilis Spitadakis Draft 0.3 Input by Neurocom
12.9.2014 Vassilis Spitadakis Draft 0.4 Revision of all inputs.

Content harmonisation.
22.9.2014 Vassilis Spitadakis Draft 0.5 Update for internal review
10.10.2014 Raquel Pau, Luis

Cortesao, Vassilis
Spitadakis

Draft 0.6 Include execution plan
diagrams

16.10.2014 François SAVARY
Vassilis Spitadakis
Raquel Pau
Luis Cortesao

Draft 0.7 Revised according to review
comments of Quartet FS

22.10.2014 Vassilis Spitadakis,
Raquel Pau

Final 1.0 Revised according to
comments made by FORTH
and MonetDB

Contributors
NEUROCOM, SPARSITY, PTIN, INRIA
Luis Cortesão, Vassilis Spitadakis, George Kotsis, Raquel Pau, Patrick Valduriez

Internal Reviewers
FORTH, QUARTETFS, MonetDB
Angelos Bilas, Antoine Chambille, Martin Kersten

Acknowledgements
Research partially funded by EC 7th Framework Programme FP7/2007-2013 under grant
agreement n° 611068.

More information
Additional information and public deliverables of CoherentPaaS can be found at: http://
coherentpaas.eu

http://coherentpaas.eu/
http://coherentpaas.eu/

CoherentPaaS: Use Cases Design page 3/95

Glossary of Acronyms

Acronym Definition
ACID Atomicity, Consistency, Isolation and Durability
ARPU Average Revenue Per Unit
BSS Business Support System
CCF Communication Control Field
CDI Contexts and Dependency Injection
CDR Call Detail Record
CEP Complex Event Processing
CPaaS CoherentPaaS
CRUD Create Read Update and Delete
E2E End-to-End
HDFS Hadoop Distributed File System
IDF Inverse Document Frequency
KPI Key Performance Indicator
KQI Key Quality Indicator
M2M Machine-to-Machine
MVC Model View Controller
POIs Points Of Interest
RDBMS Relational Database Management System
TF Term Frequency
VTP Vehicle Telematics Provider

CoherentPaaS: Use Cases Design page 4/95

Table of Contents
TABLE OF CONTENTS ... 4
1 EXECUTIVE SUMMARY ... 8

1.1 OVERVIEW OF USE-CASES .. 8
1.2 CHALLENGES FOR CPAAS ... 10
1.3 COMMON CPAAS COMPONENTS ACROSS USE-CASES .. 11
1.4 EXPECTED BENEFITS ... 11
1.5 OVERVIEW OF DEPENDENCIES ... 13

2 NOTATION: QUERY PLAN SYMBOLS ... 15
3 CLOUD TELECOM/M2M USE CASE – CDR ANALYTICS... 16

3.1 CDR ANALYTICS: USE CASE OVERVIEW .. 16
3.2 CDR ANALYTICS: ARCHITECTURE LEVEL .. 17
3.3 CDR ANALYTICS: DESIGN LEVEL .. 18

3.3.1 Requirements Context in numbers .. 18
3.3.2 Data Model .. 20
3.3.3 Functional Components ... 21

3.3.3.1 Basic Tariff Simulation Functionality ... 21
3.3.3.2 Interactive Customer analysis .. 25
3.3.3.3 What-if functions on revenue impact .. 28
3.3.3.4 Aggregate Functions ... 30
3.3.3.5 Social-network related functions .. 32

3.4 CDR ANALYTICS: EXPECTED BENEFITS ... 35
3.5 CDR ANALYTICS: COMMON CPAAS COMPONENTS .. 36

4 CLOUD TELECOM/M2M USE CASE – MACHINE-TO-MACHINE .. 37
4.1 Μ2Μ: USE CASE OVERVIEW ... 37
4.2 M2M: ARCHITECTURE LEVEL ... 37

4.2.1 Data Collection Architecture ... 39
4.2.2 Storm Topology ... 40
4.2.3 Data Expiration ... 42

4.3 M2M: DESIGN LEVEL ... 42
4.3.1 Requirements Context in numbers .. 42
4.3.2 Data Model .. 43

4.3.2.1 Generic Data Model ... 43
4.3.2.2 Master Dataset .. 43
4.3.2.3 Reference Data .. 44
4.3.2.4 Data Views – Speed Layer and Analytical Layer Views 44
4.3.2.5 Data Stores to use .. 48

4.3.3 Overall Architecture – CoherentPaaS role ... 48
4.3.4 Functional Components ... 49

4.3.4.1 Dashboard ... 50
4.3.4.2 Trip Queries .. 52
4.3.4.3 Positions Map ... 55
4.3.4.4 Activity Diagram .. 56

4.4 M2M: EXPECTED BENEFITS .. 56
4.5 M2M: COMMON CPAAS COMPONENTS ... 57

5 MEDIA PLANNING USE CASE .. 59
5.1 MEDIA PLANNING: USE CASE OVERVIEW .. 59
5.2 MEDIA PLANNING: ARCHITECTURE LEVEL .. 59
5.3 MEDIA PLANNING: DESIGN LEVEL .. 61

5.3.1 Data Model .. 61
5.3.2 Functional Components ... 63

CoherentPaaS: Use Cases Design page 5/95

5.3.2.1 Who are the most influencers? (QUERY) ... 64
5.3.2.2 Which are the communities around a set of keywords? (QUERY) 65
5.3.2.3 Adding new documents (UPDATE) ... 65

5.4 MEDIA PLANNING: EXPECTED BENEFITS .. 67
5.5 MEDIA PLANNING: COMMON CPAAS COMPONENTS .. 68

6 REAL-TIME NETWORK PERFORMANCE ANALYSIS IN A TELCO ENVIRONMENT USE CASE . 69
6.1 TELCO NETWORK PERFORMANCE ANALYSIS: USE CASE OVERVIEW 69
6.2 TELCO NETWORK PERFORMANCE ANALYSIS: ARCHITECTURE LEVEL 69
6.3 TELCO NETWORK PERFORMANCE ANALYSIS: DESIGN LEVEL .. 70

6.3.1 Requirements Contextualization ... 70
6.3.2 Data Model .. 73

6.3.2.1 DBN0 Data Model .. 73
6.3.2.2 DBN1 data model ... 74

6.3.3 Functional Components ... 75
6.3.3.1 Framework ... 75
6.3.3.2 Configuration ... 76
6.3.3.3 Inventory System .. 76
6.3.3.4 Collector ... 76
6.3.3.5 DBN1Loader ... 79
6.3.3.6 Correlation .. 81
6.3.3.7 Portal ... 82

6.4 TELCO NETWORK PERFORMANCE ANALYSIS: EXPECTED BENEFITS 82
6.5 TELCO NETWORK PERFORMANCE ANALYSIS: COMMON CPAAS COMPONENTS 83

7 BIBLIOGRAPHIC SEARCH USE CASE ... 84
7.1 BIBLIOGRAPHIC SEARCH: USE CASE OVERVIEW ... 84
7.2 BIBLIOGRAPHIC SEARCH: ARCHITECTURE LEVEL ... 84

7.2.1 Architecture overview .. 84
7.2.2 Deduplications ... 85

7.2.2.1 Example: Institutions deduplication .. 85
7.2.3 Documents indexation .. 86
7.2.4 Scoring .. 87

7.3 BIBLIOGRAPHIC SEARCH: DESIGN LEVEL ... 87
7.3.1 Data Model .. 87

7.3.1.1 CORDIS data model ... 87
7.3.1.2 Academic data model ... 89

7.3.2 Functional Components ... 90
7.3.2.1 Calculate the best reviewers for a given European project (QUERY). 90
7.3.2.2 Calculate the most related European projects with a given article
(QUERY). 91
7.3.2.3 Add new reviewers (UPDATE) .. 92
7.3.2.4 Loading process (UPDATE) ... 92

7.4 BIBLIOGRAPHIC SEARCH: EXPECTED BENEFITS ... 93
7.5 BIBLIOGRAPHIC SEARCH: COMMON CPAAS COMPONENTS ... 94

8 FUTURE WORK ... 95

CoherentPaaS: Use Cases Design page 6/95

LIST OF FIGURES
Figure 1: Operators Symbols ... 15
Figure 2: Data store colors, as used in query diagrams henceforth .. 15
Figure 3: Tariff Simulation Overview ... 17
Figure 4: CDR Analytics - Architecture .. 18
Figure 5: Main Concepts in CDR analytics use case ... 20
Figure 6: Multi-criteria selection of contracts ... 24
Figure 7: On-the-fly interactive functions .. 26
Figure 8: On-the-fly customer (what-if) analysis ... 26
Figure 9: Load CDRs of subscribers and their strongly connected numbers which are currently charged higher
than simulated charges of given scenarios ... 27
Figure 10: Substitute Scenario S with Scenario S_new .. 28
Figure 11: Substitute Scenarios of Numbers with Scenario Snew .. 29
Figure 12: Aggregated Results .. 30
Figure 13: Sort scenarios (among given list of scenarios) including the current plan based on the produced
charges for a set of “strong” numbers, as identified in the social network graph .. 34
Figure 14: Moving calls on-net .. 35
Figure 15: The Use Case Reference Architecture (Lambda Architecture) .. 38
Figure 16: Architectural Components of M2M use case .. 39
Figure 17: Gathering data from external systems ...
Figure 18: Storm topology ... 41
Figure 19: Expiration Mechanism views flow. ... 42
Figure 20: The participating data entities and their relations ... 43
Figure 21: Data Views Summary ... 45
Figure 22: Vehicle Telematics with CPaaS Architecture ... 49
Figure 23: The Vehicle Telematics M2M Case – Dashboard .. 50
Figure 24: Union of query results from speed and analytical datastores: Dashboard query 51
Figure 25: Union of query results from speed and analytical datastores: Trip query 54
Figure 26: Getting the driver details for a given union result of trips .. 55
Figure 27: The Vehicle Telematics M2M Case - Mapping New Positions .. 55
Figure 28: The Vehicle Telematics M2M Case - Monitoring Sensors. .. 56
Figure 29: CPaaS Union Operation .. 58
Figure 30: Architecture Main Components .. 60
Figure 31: XWork work flow .. 60
Figure 32: Media Planning Architecture .. 61
Figure 33: Main Components in the Social Media Use Case .. 62
Figure 34: Loading Process .. 63
Figure 35: Relationships used for filtering purposes .. 63
Figure 36: The most influencers query decomposition .. 64
Figure 37: Communities for a given set of keywords query decomposition .. 65
Figure 38: Deduplication process ... 66
Figure 39: Document indexation ... 67
Figure 40: Detect influence relationships .. 67
Figure 41: CoherentPaaS adapted Altaia Architecture. ... 70
Figure 42: DNB0 table representation, which stores the raw data ... 73
Figure 43: Logical ER diagram for the DBN1 data store layer ... 75
Figure 44: Altaia Framework summarized architecture .. 76
Figure 45: Collector architecture ... 77
Figure 46: Select all events query decomposition .. 79
Figure 47: DBN1Loader's architecture. .. 80
Figure 48: Select account query decomposition .. 81
Figure 49: An example of the word count algorithm using Trident ... 85
Figure 50: Relationships among Projects and Institutions ... 86
Figure 51: Documents indexation .. 86
Figure 52: Scoring .. 87
Figure 53: CORDIS Data Model .. 88
Figure 54: Academic data model ... 89
Figure 55: The best reviewers for a given project query decomposition ... 91
Figure 56: The most related European projects with a given article query decomposition 92
Figure 57: Bibliographic part Loading Process .. 93

CoherentPaaS: Use Cases Design page 7/95

LIST OF TABLES
Table 1: Use cases & components dependencies overview ... 13
Table 2: Basic Tariff Simulation Functions ... 21
Table 3: Hourly view of Kilometers for a specific vehicle ... 46
Table 4: DBN0 table metadata .. 71
Table 5: DBN1 table metadata .. 71
Table 6: DBN0 data volume with scaling multipliers ... 72
Table 7: DBN1 data volume with scaling multipliers ... 72
Table 8: Frequently accessed data volume .. 72
Table 9: Required Data throughputs ... 73
Table 10: Required Data throughputs ... 73

CoherentPaaS: Use Cases Design page 8/95

1 EXECUTIVE SUMMARY
The use cases of CPaaS are experiencing multi-disciplinary data access patterns in terms
of load, speed and complexity, under the same application. Therefore, though existing
solutions have addressed their needs adequately in selected usage environments, a
broader view for their roadmap will face unresolved problems unless their architecture
and technologies engaged are revisited. The options of foreseen measures are many;
however, final choices should be made emphasizing on the actual needs in terms of key
performance indicators and the use of appropriate technology in terms of technical
ability, scientific excellence and market maturity.

1.1 Overview of use-cases
A quick overview of the use cases and their overview design are listed below:

- CDR analytics: The Telecom Operator Call-Detail-Record (CDR) analytics case produces
invoices through the application of all possible combinations of pricing plans to past,
current and hypothetical network usage of existing (or hypothetical) customer base.
The main reason behind the process is to identify and compare pricing scenarios and
estimate their effect into revenue. Moreover, it offers the means to analyze
competition and justify further pricing decisions. A wide list of aggregate statistics on
those simulated invoices, together with the interactive production of new invoices
and their comparison with the simulated charges are among the basic query
functions. The number of customers, the usage volumes (function also of a given use
duration) and the number of pricing scenarios are the growth factors for the involved
data. This imposes limits to scalability, as well as it does not permit the current
solution to support interactive scenarios. The major challenge is to extract useful
answers to customers, as several functions are required to be performed interactively,
many times in front of the customer. That requires, that data subsets should be
quickly loaded and comparison analysis should be efficiently performed.

Columnar stores, together with relational data and in-memory data sets for the
interactive data, key-value stores for raw usage data, are the main data store
components considered, to enable quicker data loading and high-performance
analytics. Several times, the customer selection (which is an integral part of functional
parameters) is defined as a sub-graph where links correspond to relations among
customers based on relevant usage analysis; henceforth, graph database is enabling
efficient customer selections when such criteria are focused.

CoherentPaas will enable the use of different technologies over the same
programming and transaction layer. Otherwise, the employment of so many data
stores could be extremely complex. Moreover, consistency across data stores while
sizes and complexity grow is challenged; the holistic transaction management
component of CoherentPaas aims to achieve coherence and orchestration of actions
below the query interface.

- M2M: In the Machine-to-Machine case, a vehicle monitoring application has been
chosen; many vehicles with sensor devices are involved, continuously increasing in
terms of their population and the complexity of information processing. They send
information about speed, fuel consumption, current position, engine status and many
other vehicle-related metrics. End user applications are responsible to store such

CoherentPaaS: Use Cases Design page 9/95

information, to analyze it on regular or extra-ordinary basis, as well as to produce
real-time views for the current status and alerting messages upon specific events.

Current implementation will not be able to respond to the growing needs, and the
main concern is to follow new solutions that can scale efficiently and respond to
burstiness of event traffic. An appropriate design should compensate with both the
need of analytical queries in the huge raw data volume, as well as with the real-time
information required. The design preferred will produce table views on both the real-
time and past analytical data; when necessary, it should be able to combine the query
results from both the real-time view (stored in-memory) with analytical data views
(from columnar stores). High throughput and quick processing of event data streams
will be supported by complex event processing. Responses should also carry data
from relational databases. Combining all these frameworks (CEP, in-memory,
columnar and relational) need the unifying layer of CPaaS, especially useful when a
query function is actually facing the need to provide the union of results across two
different stores; one storing analytical data and the second storing the real-time data.
Finally, in this use case, CPaaS is not only utilized in the user query process, but also in
the system’s internal query process that is necessary for building system views for
both the real-time and the history (analytical) context.

- Media Planning: The use case of Media Planning deals with the analysis of huge
amounts of data produced by the social platforms. Such analysis results are very
interesting for marketing purposes, but cannot be analyzed with traditional
technologies, especially considering the high growth rate of social media data. The
analysis usually involves the characterization of social network entities, mainly
persons with their influencing power and their followers’ network. It also involves the
addition of new messages, where the target audience must be identified and the
impact of this message needs to be assessed in advance. Current approaches use a
single technology store which does not fulfill all the needs of media planning
functions.

The new design considers the use of graph data stores for filtering purposes,
document stores for data with flexible sizes, key-value stores to persist complex items
related with a given key and relational databases for common information that is
necessary to complete the queries’ responses. This mixture is expected to efficiently
respond to needs; however, the ability to work with all these stores needs to be
facilitated by CPaaS, through both its common query language interface and its
holistic transaction management.

- Telco Network Performance Analysis: The objective of the Real-Time Network
Performance Analysis in a Telco Environment use case is to detect network problems
before any degradation or unavailability of services occur, by actively supervising it.
However, monitoring the whole network implies analyzing big amounts of data in
real-time and the current solution does not provide the required degree of scalability
that can be found in cloud environments. The existing end-to-end (E2E) system
actively detects deterioration in a network using almost real-time KPIs and key quality
indicators (KQIs), finds the cause of performance problems and the produced data is
always ready to be analyzed through reports and dashboards to check the network’s
performance.

The plan is to use CPaaS to provide a rich Platform-as-a-Service that supports several
data stores accessible via a uniform programming model and language. Based on an
analysis of data access patterns from the use case data store layers - data stores with
non-normalized tables (like document database) will be used to store the same type

CoherentPaaS: Use Cases Design page 10/95

of data, i.e. raw data; key-value stores for information drill-down functions; other
data bases (mainly columnar) will store only aggregated data, i.e. calculated KPIs and
KQIs, using a star schema -, different data store alternatives will be accessed and the
most adapted will be applied. The CPaaS based platform will have to comply with
demanding delay, throughput and data volume requirements. The use of complex
event processing will be the key to process and correlate events before the
production of the appropriate alarm. Additionally, CPaaS will keep the needed
traceability of performance bottlenecks and debugging of errors in applications. It will
also enable easier addition of a new data store component or change of an existing
component with other solution.

- Bibliographic Search: The use case of the Bibliographic Search employs a collection of
queries which aim to extract information from bibliographic databases. These data
bases collect the researchers’ knowledge and are important resources to find experts
and institutions working in specific research areas. Mainly, they are used by
researchers to know the state of the art of a given topic. However, they can be used
for many other purposes such as looking for reviewers, collaboration, similar papers
or works and so on. The existing system performs such type of queries using a graph
database. However, the current design is not scalable and has no transactions. The
system is redesigned, having different datastores with more appropriate structures
for each scenario.

The mixture of relational database (for basic data), documental stores (for textual
data), graph data (to store relationships) and key-value datastores for complex items
which need to be analyzed and are associated to a common key, provides a promising
solution. The design aims to increase queries throughput. The use of CPaaS will
simplify development through the use of a common syntax for the integration of
inputs and outputs of different datastores. Holistic transaction management will be
responsible to combine consistency and coherence across data stores with scalability.

1.2 Challenges for CPaaS
The challenging issues for CPaaS raised by the designed use cases are:

• the transparent usage of better adapted data stores for the big data scenarios that all
use cases will have to face; being able to use the best suited data store for the data
being stored, while maintaining the top application untouched; This is very important,
as existing systems and application are the ones who need to migrate to more
powerful environments, and this must be achieved without imposing complete
application re-engineering and development times

• while following a compound query and data store approach, using NoSQL, SQL and
CEP cloud data technologies, holistic transaction management should guarantee full
ACID features even at scale,

• simplifying development over different data technologies; no need to write different
code for each data store. This is key for the reduction of complexity and incurred costs
which is considered as a major barrier for real-time practices in big data

• enhancing scalability and performance; moving business intelligence and analytics at
the front end, within interactive usage contexts is a major achievement expected by
the CoherentPaaS enabling layer and the appropriate usage of data stores

CoherentPaaS: Use Cases Design page 11/95

• co-existence of real-time analytics with analytical queries on historical data;
combination of the two different contexts. Through the usage of the CoherentPaaS
CEP system, we expect to reduce framework processing and anticipate real-time
alarms and event processing, while benefiting from the ease of usage provided by its
SQL-like language and associated database operators.

• Flexibility to change a specific data store with another choice and ability to enable
easy future integration of additional cloud data stores in the future

1.3 Common CPaaS Components across use-cases
Having reviewed the designs of all use cases, we have identified a set of components that
can be shared across different use cases with a similar architecture. They are described in
Section 3.5, 4.5, 5.5, 6.5 and 7.5 and we summarize them below:

1. Trident-CloudMdsQL1: Common trident plugins to make persistent queries and
aggregates inside a trident topology for a specific data store.

2. Storm components: Storm has a set of different components types: bolts, spouts and
aggregators. Many storm components which are hard to code could be shared and
reused between use cases.

3. Xwork-cloudMdsQL: XWork (as explained in Section 5.2) has a pluggable architecture
and then interceptors, actions and results can be shared across different use cases. A
shared component Xwork-cloudMdsQL plugin can inject the query engine into the
actions and manage the transaction workflow before executing an action.

4. Union operation of cloudMdsQL: An interesting common component is the union
operation among the results of two queries, as applied into two parallel data stores
(in many cases, the two queries bring similar data from different contexts i.e. a real-
time context and a persistence context).

5. Projection by graph node members: It is the frequent case, when a table must be
filtered based on the result of a graph relation that fulfills a certain criteria.

1.4 Expected Benefits
In terms of anticipated benefits remain the same with the performance goals as
prescribed within D.9.1 “Use Case Requirements Analysis”. In brief:

CDR Analytics Use Case: The most important benefits expected by our design are:

• Ability to utilize multiple stores efficiently; until now, tariff simulation development
cannot attempt to involve multiple types of datastores, though it is sure that for
certain cases, different stores are applicable and preferred in order to achieve the
best performance. Involving different technologies will increase complexity and will
require a unified framework to address all stores transparently; the need for
CloudMdsQL becomes apparent

1 CloudMdsQL is the name of the common query language interface across heterogeneous data stores
in CoherentPaaS

CoherentPaaS: Use Cases Design page 12/95

• Ability to apply interactive functions; a feature which was not possible, but with the
appropriate datastore employment (in-memory and columnar) it can be
accomplished. Efficient load of selected usage data is one need, addressed already by
first testing scenarios where the in-memory solution has been used.

• Ability to scale in cloud environments; increasing number of scenarios, number of
billing cycles and number of customers will not be an upper bound for the system.

M2M Use Case: The existing architecture imposes serious shortcomings, especially in
respect to the ability to accommodate increasing needs, in terms of message throughput,
analytical query execution and real-time alarm identification and handling. Therefore, the
proposed approach

1. Moves all processes and store facilities into cloud cluster settings,

2. Separates real-time processing from analytical oriented processes

3. Enables the union of the real-time context with the past data results, when that is
required

4. Selected the best appropriate data store framework for each data set according to
the data needs

Separation of the real-time context and utilization of different data technologies, from
Complex Event processing (Storm) and fast OLTP (Derby in-memory) to analytical
databases (MonetDB), will be facilitated through CPaaS. In that context the ability to
handle larger message throughputs as number of devices increases will not be affected by
the load of user queries and dashboard views. The system should handle each event in
not more than 4 ms.

Apart from the above, more queries will be defined that will satisfy important business
needs. Raw data will be processed efficiently so that the notion of trips will be stored and
trip statistics will become also available. In that context, the real-time processing does not
only facilitate the creation of real-time views and alarm handling, but they can also
supplement raw data with additional information when that is necessary (in case of trip
identification, assignment of trip identification to events is a useful data enrichment,
filling the gap of sensor data).

Media Planning Use Case:

Nowadays, we have an existing system for Acceso and Media Planning Group with similar
queries that is completely build just using a graph database and a documental database.
However, the current design is not scalable and has no transactions. We aim to achieve
the loading of 1 million documents in less than 12 hours, and the solving of all analytical
queries in less than 1 minute. Also, we expect having different datastores (graph,
document, key-value and RDBMS) with more appropriate structures for each scenario
increase queries throughput.

Telco Network Performance analysis Use Case: Most of the expected benefits will
emerge from the transparent usage of better adapted data stores for the big data
scenario that this use case will have to face. Previous experiments using Impala over
Hadoop showed some improvements regarding the use case requirements. Hence, we
expect that using CoherentPaaS we will be able to use the best suited data store for the
data being stored, while maintaining the Altaia system relatively untouched. Data stores
and associated expected benefits:

CoherentPaaS: Use Cases Design page 13/95

• As our initial approach regarding the DBN0 data store used a single flat table in an
Oracle database instance, we decided to test the CoherentPaaS platform with the
Derby (DQE) and the MongoDB data stores.

• Columnar data stores, such as MonetDB or Derby (DQE) - HBase based -, are a
possibility for the DBN1 data store layer, due to the usage of star schemas, which can
lead to better compression, and the low delay imposed when selecting information
but not while inserting. In-Memory columnar data stores such as ActivePivot will be
evaluated but should be take into account the huge amount of data that was required
to store in memory, in order to achieve a high query hit ratio;

• Key-Value data stores, such as Eutropia, are well designed for the drill-to-detail
queries to the DBN0 data store layer due to its specific data access pattern, i.e. getting
single values using a key. We won’t use them, however, because that would require
having the data replicated, meaning terabytes of additional space.

• Through the usage of the CoherentPaaS CEP system, we might expect to reduce
framework processing (alarming) and anticipate real-time alarms, while benefiting
from the ease of usage provided by its SQL-like language and associated database
operators.

Bibliographic Search Use Case: Nowadays, UPC has an existing system called Sciencea
with similar queries that is completely build just using a graph database. However, the
current design is not scalable and has no transactions. Also, we expect having different
datastores (document, graph) with more appropriate structures for each scenario
increase the performance of the number of queries per second. Actually we expect that
the system will be able to solve all analytical queries in less than 1 minute. Moreover,
having CloudMdsQL simplifies the development because this component integrates
inputs and outputs of different datastores using a common syntax. Otherwise, we would
need to write a lot of code to parse and sent data from different datastores in each
functionality.

1.5 Overview of dependencies
The table below illustrates all dependencies on data components and stores across the
use cases (in bold are the most important ones for the use case):
Table 1: Use cases & components dependencies overview

 Component

Use case

CEP Key-

Value

Columnar RDBMS Document Graph In-memory

1. CDR analytics Hbase MonetDB Derby SparkSee ActivePivot

2. M2M Storm MonetDB

Hbase

Derby Derby in-

memory

3. Media Planning Trident/

Storm

Hbase Derby SparkSee

4. Telco Network

Performance

Storm MonetDB Derby MongoDB ActivePivot

5. Bibliographic

Search

Trident/

Storm

Hbase Derby MongoDB SparkSee

In subsequent sections we present in more detail the architecture and design of each use
case. Our analysis shows that each use case requires multiple data stores to address

CoherentPaaS: Use Cases Design page 14/95

efficiently its needs. The role of CPaaS is key to support the co-existence of many data
stores within each use case:

• CloudMdsQL (delivered by CPaaS) will simplify the code of integrating result sets of
different datastores. Otherwise, a lot of code will be required to parse and send data
from different datastores in each functionality.

• CPaaS based platforms will have to comply with demanding delay, throughput and
data volume requirements.

• CPaaS will keep the needed traceability of performance bottlenecks and debugging of
errors in applications.

• CPaaS simplifies the logic and use of the query interface and provides a single
transaction shell for complex functions across different stores.

CoherentPaaS: Use Cases Design page 15/95

2 NOTATION: QUERY PLAN SYMBOLS
Figure 1 and Figure 2 below present the symbols that will be used for the operators in the
several queries decomposition diagrams as well as the color selected for the illustration of
each data store.

Figure 1: Operators Symbols

Figure 2: Data store colors, as used in query diagrams henceforth

CoherentPaaS: Use Cases Design page 16/95

3 CLOUD TELECOM/M2M USE CASE – CDR
ANALYTICS

3.1 CDR Analytics: Use Case Overview
Telecom operators are eager to use software solutions to obtain insight to the trends that
are formed (or could be formed) in their customer base. Such solutions engage among
others, the comparison and what-if analysis of invoicing output at customer level or
customer segment level, based on the knowledge of current agreements and billing
operations, past and current network usage, and the assumption of possible alternative
charging schemes. Analytics on high volume data are mainly needed for telecoms product
development and management.

The outputs of such processing are assisting decision management in respect to the
creation and impact assessment of new offers and the identification of target customer
segments affected by new invoicing policies; they are providing the means to analyze
competition and relevant threats, reduce customer churn, control ARPU, control costs,
and increase competitiveness. Limitations and concerns in such use cases are due to the
increasing volume of usage data and the number of alternative scenarios that need to be
studied; number of scenarios, usage data and number of customers are the main
multipliers of stakeholder’s data size.

The case becomes more demanding when application results need to be provided
interactively to the customer. Interactivity is necessary for “what-if” scenarios per
customer. The need for better performing data solutions becomes evident, and therefore
the use case becomes challenging for data store technologies to achieve cost-effective
scalability and elasticity of applications.

Customers and subscriber numbers are not unrelated to each other; they are nodes of
usage-based graph representations (a type of social network) that indicate key customers
(leaders, opinion influencers or weak, under churn risk). Analytics are also useful and
valuable to consider social network criteria, as created by call usage analysis, and
customer groups defined by such ‘social’ relations (as represented within graph
representations).

The main, indicative, functionalities provided by the use case are:

Interactive Tariff Simulation - Per customer / group of / subnetwork of contracts

• Find the best scenario for a customer or for a specific number
• Find the best offers (scenarios) that achieve a specific target
• Compare charges produced by a new scenario with current charges
• Find the effect of changing a specific scenario or changing the scenarios of a

specified set/network of contracts

Aggregate – Customer Segmentation

• Find customers with the biggest delta (distance) from their best scenario;
• Find distance of each customer from his best scenario or from a specific scenario
• Find average distance of the invoices from the corresponding best scenario per

scenario;

Social Network - based

CoherentPaaS: Use Cases Design page 17/95

• Find customers which are key (leaders or very weak) according to their social
network characteristics (as derived from their calls and the related usage); find the
most appropriate scenario to propose to them

• Find through the social network interpretation, numbers which are non-
subscribers; calculate impact on revenue in case the calls to these numbers
become on-net (i.e. they switch their network to the operator’s network)

3.2 CDR Analytics: Architecture Level
The overview architecture (Figure 3) of the CDR analytics use case, contains

• A powerful rating / billing engine that reads usage data, users data and pricing
rules (contracts and scenarios) and produces invoice lines, which are the main
elements of end customer (subscriber) invoices. When the customer data are
“real” and rating is run by the telecom billing operations unit, the produced
invoices are those to send to the customer; but when the data and mainly the
pricing schemes are hypothetical, invoices produced are simulated and show what
could have been charged if pricing rules were different. Pricing rules are called
scenarios and are part of the system’s input along with the customer data, the
contracts, the agreements and the usage data (CDRs).

• The analysis application engine that processes the simulated invoices and makes
the necessary comparisons, performs analytical queries, re-invokes rating process
to re-produce invoices, takes variable user input (scenario parameters, different
pricing targets, customer selection parameters, etc.) and visualizes results.

Figure 3: Tariff Simulation Overview

Involved data include:

• CDRs: the call detail records (network usage data)
• Contract and Customer data: the customer details, their contracts, their numbers

and the associated scenarios agreed for charging them,
• Actual Invoice Lines: the current charges of contracts for given billing cycles

CoherentPaaS: Use Cases Design page 18/95

• Other Rate Plan/Scenarios: these are practically all considered scenarios
(including hypothetical ones) combining base rateplans, addons, discounts and
promos; definition of new scenarios might be interactively made ‘on-the-fly’
through successively applying modifications

• Invoice lines: these are the simulated invoice lines, those produced by the rating
of CDR data according to all Other Rate Plans and Scenarios.

The same picture (Figure 4 below), from a different perspective, shows all datasets which
are necessary within different contexts of the CDR analytics use case.

Figure 4: CDR Analytics - Architecture

These sets will be hosted on different types of data stores so that maximum performance
can be obtained by considering data access pattern particularities and abilities of
different store. They will be accessed by the rating and analysis applications through a
single query layer and transaction interface, the CloudMdsQL layer, to simplify the code
of integrating result sets of different datastores.

3.3 CDR Analytics: Design Level

3.3.1 Requirements Context in numbers

As described in D.9.1 “Use Case Requirements”, the currently developed price simulation
and margin analysis applications by Neurocom use relational data stores (Oracle and
PostgreSQL) as main data storages. The numbers below, show data use and currently
faced times of execution within batch executions, as not any interactive use is attempted
due to unacceptable performance of responses:

CoherentPaaS: Use Cases Design page 19/95

Current data use and measured performance

CDRs per month

Rating execution time

Execution time for a tariff simulation cycle

Time to load data into margin analysis application

Time for tariff simulation on 3 months data

Execution time of margin analysis in total

Number of scenarios

Number of records

Database size for margin analysis

~410 M

30 minutes average

2 hours/billing cycle

~12 hours

~24 hours

~36 hours

300

5.5 billion invoice lines

500 GB

Under realistic conditions, the margin analysis functions are not scalable. For instance,
the following sets of figures are the elements of a use case requested:

• Number of contract numbers: 500,000;
• Period of time: 3 months;
• Avg. number of invoice lines per invoice: 10;
• Number of combinations: 5000;
• → 25 billion invoice records need to be processed.

For this scenario, it is necessary to make decisions on a 25-billion line table that exceeds
size of 1.2 Terabytes. Current solution is not scalable and cannot be scalable, with
relational data stores, especially if results should be available almost real-time through a
web interface; for instance the extraction of one customer CDR data (out of a 500
Gigabyte CDR store), which is the typical case for an interactive scenario, cannot be
executed into affordable times. The interactive use scenarios demand the following
performance:

- The load of one contract’s CDRs within 5 to 15 seconds
- The load of 1000 contracts’ CDRs within 60 to 120 seconds
- The retrieval of one contract’s best scenario within 30 seconds
- The retrieval of 1000 contracts’ best scenario within 2.5 to 5 minutes

Consequently, it is promising to migrate from the current architecture, to one that
combines more data stores; actually, to in-memory load the usage data and to use data
stores with performance excellence on aggregation queries. Hence, CoherentPaaS
became an interesting proposal to assess.

Moreover, scalability is desired; sizes of telecom operators and their customer segments
vary from case to case. Any solution should and be able to retain performance across
different load demands. Finally, in certain cases, the operators want to add the ability to
involve more complex queries, where contracts are selected based upon criteria on their
relations in a social network produced from the usage data. The need for graph database
becomes apparent.

Mixing different data stores to provide holistic transactions across all stores, while at the
same time being able to scale, is interestingly challenging for the proposed CoherentPaas
infrastructure.

CoherentPaaS: Use Cases Design page 20/95

3.3.2 Data Model

In the CDR analytics use case, the main concepts involved are the invoice lines (e.g.
charges), which actually carry the calculated charges for contracts within a billing cycle,
when scenarios (rateplans, addons, discounts and promos) are applied to the network
usage records (CDRs) that belong to these billing cycles. A contract is owned by a
customer, owns several numbers (MSISDNs) and has its billing cycle defined by the date
of each month that a new billing cycles starts over. Α number is linked to another
number, when the CDRs indicate call usage among these numbers. A scenario is applied
on the network usage records of the numbers that belong to the segment and produce
alternative invoice lines/invoices. Each invoice line belongs to one scenario and each
scenario has multiple invoice lines for the same number and billing cycle.

Figure 5: Main Concepts in CDR analytics use case

To persist the data related to these concepts we suggest the use of different
datastores to reduce the number of I/O operations and maximize performance. They
are listed below, ranked according to their importance in the use case:

• Columnar: To persist invoice lines where aggregated data and analytics need to be
efficiently produced. MonetBD will be used.

 Invoice Lines : (id, ContractId, ScenarioId, billing cycle, charge, charge type)

• In-Memory: To persist usage data and invoice lines (those interactively produced)
into AcvtivePivot when involved into interactive comparison scenarios related to
one customer:

 Network Usage Records (id, date, channel)

 Invoice Lines : (id, ContractId, ScenarioId, billing cycle, charge, charge type)

• Graph data store: To represent the social network of numbers (MSISDNS) based
on the statistical processing of usage :

 A calls B (times, duration, billing cycles, frequency, type)

• Key-value (or HDFS) : To persist raw data

 Network Usage Records

CoherentPaaS: Use Cases Design page 21/95

• RDBMS: To persist basic data and configuration metadata required to return as
part of the projection of a given query.

 Customer (CustomerId, name, channel)

 Contract (ContractId, CustomerId, UserId, …)

 Numbers (MSISDN).

3.3.3 Functional Components

The main functionalities provided by this use case are:

• What is the best scenario for one number/one customer/one group of numbers?
• Which scenario brings charges of one number/one customer/one group of

numbers closest to a specific target?
• How revenues will be affected if a scenario is replaced with another scenario?

What if such replacement takes place for a specific set of contracts whatever
scenario they are having now?

• How a customer invoice is affected when I change his scenario or which scenario is
achieving a specific target for his/her invoice charges?

• What is the distance of each customer invoice from its best scenario?
• What is the distance of each customer invoice from a specific scenario? (or what is

the distance of a specific scenario from each current invoice?)
• What is the average distance of the invoices produced by a given scenario from

the best scenario case?
• Which customers should be approached and which offer is most appropriate to

propose them in order to effectively promote my business goals?
• How revenues will be affected if a set of numbers which are non-subscribers

switch to our network?

All functionalities use different datastores simultaneously. Having CloudMdsQL will
simplify the code of integrating result sets of different datastores. The following
subparagraphs, group functionalities according to their main characteristics in terms of
needs, describe these functionalities, the representative queries as required and the
involved datastores.

3.3.3.1 Basic Tariff Simulation Functionality

Basic functions of tariff simulation involve the following functions, as in the Table below:
Table 2: Basic Tariff Simulation Functions

 For One Number For One Customer

(list of Numbers)

For a Network

of numbers

Load Usage Data For a specific number of billing cycles

Load Invoice Lines For a specific number of billing cycles

Find Best Scenario

CoherentPaaS: Use Cases Design page 22/95

 For One Number For One Customer

(list of Numbers)

For a Network

of numbers

• Distance from current

charge

• Distance from each

scenario charge

-Iterate for each

number

-Iterate for each

customer

Find Target Scenario
Target defined as:

• function of current

charge

• function of best charge

-Iterate for each

number

-Use variable input

target

-Iterate for each

customer

-Use variable input

target

-Use variable input

target

Functions are applied on a per number basis, or on a group of number identified

• as a list of numbers,
• as numbers belonging to the same customer
• as linked to a single number according to specific social network criteria

Indicative queries which will be used to realize such functions are described below.

3.3.3.1.1 Best Scenario for one number

Definition: The scenario that brings the best (smallest) charge to a specific subscriber
number (contract) for a specific usage, as defined by the network usage within certain
billing cycles. A more detailed definition is given below:
GIVEN:

- Contract Number: CNTRid
- Number of Billing Cycles: N or cycles in period [DDMMYY – DDMMYY]

or given billing cycles Β1, Β2,….BN

FIND: best scenario

 Retrieve InvoiceLines where Contract is CNTRid and Billing Cycle in

[B1, … BN]

 Calculate Aggregate Prices by Scenario

 Get the Scenario of the Minimum Aggregate Price

A CNTRid is associated to one number (MSISDN), though one MSISDN might have been
engaged into many contracts. Therefore, we make our calculations based on Contracts
and not numbers.

3.3.3.1.2 Best Scenarios for a Customer / a Group of numbers / a network of numbers

Definition: The scenario that brings the best (smallest) charge to a specific customer for a
specific usage as defined by the network usage within certain billing cycles. A more
detailed definition is given below:
GIVEN:

- Customer: Cid

CoherentPaaS: Use Cases Design page 23/95

- Number of Billing Cycles: N or cycles in period [DDMMYY – DDMMYY]

or given billing cycles Β1, Β2,….BN

FIND: best scenario per customer contract (CNTRid of Cid) achieving the
best customer bill

 Retrieve InvoiceLines where CNTRid belongs to Cid and Billing Cycle

in [B1,… BN]

 Calculate Aggregate Prices by (Scenario, CNTRid)

 Get the Scenarios of the Minimum Aggregate Prices by CNTRid

Similar to the case of a customer, is the case of a set of numbers; such set can be defined
either as a list of numbers or can be extracted from the social network of number based
on certain criteria. The query definition is then modified as it follows:

Definition: The scenario that brings the best (smallest) charge to a specific set of numbers
(contracts) for a specific usage, as defined by the network usage within certain billing
cycles. In this case, the following query statements are the ones who filter the Invoice
lines that are necessary to be processed:

To get the invoice lines for a given list of contracts

 Retrieve InvoiceLines where CNTRid in [CNTR1, … CNTRm] and Billing
Cycle in [B1, … BN]

To get the invoice lines of a specific social network centered round a given number

 Retrieve InvoiceLines where CNTRid in)and Billing Cycle in [B1,
… BN]

The Figure 6 below shows the query execution diagrams (the symbols for operators and
colors for Datastore types are explained in Section 2) for the best scenario finding for a
list of contracts as selected and for a social network subgraph centered around a given
number. A multi-criteria filtering of invoice lines is accomplished based on the contracts
selected.

CoherentPaaS: Use Cases Design page 24/95

Figure 6: Multi-criteria selection of contracts

3.3.3.1.3 Target scenario for a number

Definition: The scenario that brings the charge of a specific contract closest to a given
target (normally expressed as a percentage of reduction of the current charges), for a
specific usage, as defined by the network usage within certain billing cycles. A more
detailed definition is given below:
GIVEN:

- Contract Number: CNTRid
- Number of Billing Cycles: N or cycles in period [DDMMYY – DDMMYY]

or given billing cycles Β1, Β2,….BN
- Current Bill: CurrentInvoiceCharge2

FIND: the scenario that achieve charges that are lower than and closest
to (x%) of current charge - and not lower than (y%) of current charge

 Retrieve InvoiceLines where Contract is CNTRid and Billing Cycle in

[B1, … BN]

 Calculate Aggregate Prices by Scenario

 Get the Scenarios (SCi.,…SCn) where the Aggregate Price is less
than (x%) of CurrentInvoiceCharge sorted based on the Aggregate
Price P(CNTRid, SCi)

2 it could be calculated based on given CNTRid and the current Scenario

CoherentPaaS: Use Cases Design page 25/95

 Get the One Scenario from (SCi.,…SCn) with the Maximum Aggregate

Price P(CNTRid, SCi) only if this price is Larger than (y%) of
CurrentInvoiceCharge

3.3.3.1.4 Target scenario for a customer / a Group of numbers / a network of numbers

Definition: The scenario that brings the charge of each contract of a specific customer
closest to a given target (normally expressed as a percentage of reduction of the current
charges of the contract) for a specific usage, as defined by the network usage within
certain billing cycles. A more detailed definition is given below:
GIVEN:

- Customer: Cid
- Number of Billing Cycles: N or cycles in period [DDMMYY – DDMMYY]

or given billing cycles Β1, Β2,….BN
- Current Bill: CurrentInvoiceCharge (or it could be calculated based

on given CNTRid and the current Scenario

FIND: the scenarios that achieve charges for each customer contract to
be lower than and closest to (x%) of current charges - and not lower
than (y%) of current charge

FOR EACH CNTRid that belongs to Customer Cid:

 Retrieve InvoiceLines where Contract is CNTRid and Billing Cycle in
[B1, … BN]

 Calculate Aggregate Prices by Scenario

 Get the Scenarios (SCi.,…SCn) where the Aggregate Price is less
than (x%) of CurrentInvoiceCharge sorted based on the Aggregate
Price P(CNTRid, SCi)

 Return the One Scenario from (SCi.,…SCn) with the Maximum Aggregate
Price P(CNTRid, SCi) only if this price is Larger than (y%) of
CurrentInvoiceCharge

Similar to the case for one customer, is the case of a set of numbers; such set can be
defined either as a list of numbers or can be extracted from the social network of a
number defined with certain criteria. The query definition is then modified appropriately,
as it was in the case of the best scenario finding that was previously described, to find the
target scenarios:

 FOR EACH CNTRid in [CNTR1, … CNTRm] and

 FOR EACH CNTRid in

3.3.3.2 Interactive Customer analysis

Several functions require the direct extraction of results because of the fact that they are
caused by interaction with the customer, needing answers as quickly as possible, as well
as, justified and well supported from the operator’s side.

The following Figure 7 illustrates such cases which are mainly the following:

• Searching the target scenario achieving a variable target charge; the user is
continuously modifying the target amount, viewing the scenarios which bring the
target for a specific customer selection. The actual charges and the simulated ones
are utilized.

CoherentPaaS: Use Cases Design page 26/95

• Searching the best scenario and calculation of the brought revenue, among
different input scenarios. Usually, the user is having a set of constant options
within its scenario (pivot parameters) and continuously applying changes to other
parameters, while observing how revenues are affected and which is finally the
most appropriate option

• Providing a new scenario as an input and getting interactively the charges caused,
• Providing a new scenario as an input and getting a new view on the produced

revenues, as well as in comparison with simulated revenues

Figure 7: On-the-fly interactive functions

As shown in Figure 8, the critical functions in the process are mostly related to the
efficient and quick

• Loading of usage data (for one number or one customer)
• Rating of selected CDR in order to produce new simulated invoices.

Figure 8: On-the-fly customer (what-if) analysis

CoherentPaaS: Use Cases Design page 27/95

The next computation steps in the interactive function, will involve quick and easy
comparisons of temporal results with actual and simulated charges. Results for one
number or for a list of numbers could be:

• Display all “Deltas”, distances (sorted) of invoice charges per scenario from the
new invoice

 Display all scenarios which are affected by the new scenario.
 Highlight “adjacent” scenarios (scenarios that produce invoice charges

adjacent to the new charges)
• Calculate distance from the current actual invoice

Figure 9 below, shows an interactive query that select and loads CDRs of a certain user
and his/her network according to certain criteria in his social network graph; it filters only
those whose bills are higher (for a certain amount) than their simulated bills for focused
(one or more) scenarios. This can be necessary when the application users checks for a
new scenario (or a set of new scenarios), how it stands in comparison to current charges.
Actually, the query will finally load the CDRs, in order to rerate them with new scenarios
which will again be compared.

All this process might be necessary to be performed on the fly. Indicative times have been
prescribed in D.9.1 “Use Case Requirements”: extraction of a customer usage data (in
order to re-rate them again) from a bunch of 5 billion CDRs should not take more than a
few seconds (less than 10 seconds), while similar extractions out of simulated invoice is
considered affordable only when it remains within a range of 1-2 minutes.

Figure 9: Load CDRs of subscribers and their strongly connected numbers which are currently charged

higher than simulated charges of given scenarios

CoherentPaaS: Use Cases Design page 28/95

3.3.3.3 What-if functions on revenue impact

Another set of functions would seek to assess the impact on revenue of changes in the
applied scenarios for selected contracts (i.e. what could happen when I decide to modify
a given scenario) or how a given scenario (i.e. a competitor’s one) affects the revenue
whenif applied to a certain customer segment. Results of such what-if analysis function
could be:

• Calculation of the change in revenue
• Identification of the customer segment which is in risk (where the new charges are

larger than the actual charges)
• Calculation of the change in revenue when I change scenario only for the

customer segment which is in risk

Certain examples of what-if cases and relevant queries are provided below.

3.3.3.3.1 Modify a Scenario – How it affects my revenue?

Figure 10: Substitute Scenario S with Scenario S_new

Figure 10 above shows the way that a functional process is analyzing what could happen
to actual revenue when a given scenario (S) is changed, and is substituted by another,
new scenario (S_new). Actually the “new invoices” contain the old (actual) ones for the
contracts where the applicable scenario is not the given one (S) and the invoices (found in
the simulated invoices) with the new scenario (S_new) for the contracts which until now
are applied to the given scenario (S).

A representative query is described below.

Definition: The change in revenue when a scenario is changed and is replaced by another,
new, scenario. The query will attempt to calculate the new revenue; for this, it will sum
the actual invoices where the applied scenario is not the new scenario, with the sum of
the simulated invoices with the new scenario, only for those contracts which have the old
scenario as actual. A more detailed description of the queries is given below:
GIVEN:

- Scenarios: S and Snew
- Current Invoices

FIND: the effect in revenue

CoherentPaaS: Use Cases Design page 29/95

 SUM(charges) in CurrentInvoices where scenario is not S

 Select Contracts in CurrentInvoices where scenario is S as

S_Contracts

 SUM(Charges) in InvoiceLines where Scenario is S_NEW and WHERE
Contract is in S_Contracts

 Add the two sums

3.3.3.3.2 Scenario Substitution in a Group of Customers– How it affects my revenue?

Figure 11: Substitute Scenarios of Numbers with Scenario Snew

Figure 11 above shows the way that a functional process is analyzing what could happen
to actual revenue when a given scenario (S_new) is applied to a selection of contracts
(defined in various ways, even as a network of contracts with numbers linked to each
other according to certain social network criteria). Actually the “new invoices” contain the
old (actual) ones for the contracts which are not selected and the invoices (found in the
simulated invoices) with the new scenario (S_new) for the selected contracts.

A representative query is described below.

Definition: The change in revenue when a new scenario is applied to a selected group of
contracts. The query will attempt to calculate the new revenue; for this, it will sum the
actual invoices of contracts which are not selected, with the sum of the simulated
invoices with the new scenario, only for those contracts which match the selection
criteria. A more detailed description of the query is given below:
GIVEN:

- Scenarios: Snew
- Current Invoices

- Group of Contracts: [CNTR1 … CNTRm] (m Numbers) (or in)

FIND: the effect in revenue

 SUM(charges) in CurrentInvoices where Contracts not in

[CNTR1,….CNTRm] (or not in)

 Select Contracts in CurrentInvoices where scenario is S as
S_Contracts

CoherentPaaS: Use Cases Design page 30/95

 SUM(Charges) in InvoiceLines where Contracts in [CNTR1,….CNTRm] (or

in)and Scenario is S_New

 Add the two sums

3.3.3.4 Aggregate Functions

These are the functions that perform analytical queries on the simulated invoices, mainly
in order to provide aggregate statistics or even in order to perform segmentation of the
customer base upon certain criteria (as illustrated in Figure 12)

Figure 12: Aggregated Results

Functions may sometimes apply comparison with actual invoice results or certain
simulated results. Further post processing can be applied in order to justify customer
segmentation scenarios:

• Based on comparing delta-values with current charges

• Based on absolute delta-value range

• Based on absolute charges

For instance, aggregated results could provide categorization of customers into churn
probabilities, putting them in lists:

• Where the distance of their actual charge from the best charge is less than 5% of
the actual charge (low risk to loose)

• Where the distance of their actual charge from the best charge is more than 5% of
the actual charge and less than 20% (medium risk to loose)

• Where the distance of their actual charge from the best charge is more than 20%
of the actual charge (high risk to loose)

The indicative queries of the Figure 12 are also described below.

3.3.3.4.1 Customer distance from best scenario

Definition: The distances of all contracts (and all customers) from the invoice produced
by the best scenario. The current charges are compared to the produced charges from the

CoherentPaaS: Use Cases Design page 31/95

best scenario for each number, on the same usage. The same definition can be expressed
as, the distances of the best scenario of each customer from the current charges, as a
means to identify customers who are likely to be in a risk because of alternative offerings
in the market. A more detailed definition is given below:
GIVEN:

- Invoice Lines:
- Number of Billing Cycles: N or cycles in period [DDMMYY – DDMMYY]

or given billing cycles Β1, Β2,….BN
- Current Invoices

FIND: the distance of each Contract from its Best Scenario

FOR EACH CNTRid:

 Retrieve InvoiceLines where Contract is CNTRid and Billing Cycle in
[B1, … BN]

 Calculate Aggregate Prices by Scenario

 Get the Scenario Sid-best of the Minimum Aggregate Price

 BestCharge P(CNTRid, Sid-best)

 Δ CurrentCharge – BestCharge

 Return(CNTRid, Sid-best, Sid-current, BestCharge, CurrentCharge, Δ)

3.3.3.4.2 Customer distance from a given scenario

Definition: The distances of all contracts (and all customers) from the invoice produced
by a specific scenario. The current charges are compared to the produced charges from a
specific scenario for each number, on the same usage. The same definition can be
expressed as, the distances of a new scenario from the current charges, as a means to
identify customers who are likely to be in a risk because of this new offer. A more detailed
definition is given below:
GIVEN:

- Invoice Lines:
- Number of Billing Cycles: N or cycles in period [DDMMYY – DDMMYY]

or given billing cycles Β1, Β2,….BN
- Current Invoices
- Given Scenario S

FIND: the distance of each Contract from Scenario S

FOR EACH CNTRid:

 Retrieve InvoiceLines where Contract is CNTRid and Billing Cycle in
[B1, … BN]

 S_Charge P(CNTRid, S) i.e. Calculate Aggregate Price where
Scenario is S

 Δ CurrentCharge - S_Charge

 Return(CNTRid, Sid-best, Sid-current, S_Charge, CurrentCharge, Δ)

3.3.3.4.3 Invoices distance from best per scenario

Definition: The average distance of each scenario from the best scenario, defined as the
average distance of the invoices produced by the scenario for all contracts, from the best

CoherentPaaS: Use Cases Design page 32/95

invoice (as produced by the best scenario) of each contract. This is to identify the
equivalency of scenarios application upon specific customer segments as well as quantify
the effectiveness of scenarios. A more detailed definition is given below:
GIVEN:

- Invoice Lines:
- Number of Billing Cycles: N or cycles in period [DDMMYY – DDMMYY]

or given billing cycles Β1, Β2,….BN

FIND: the average distance of invoices from their best per scenario

TABLE BEST_CHARGES each row is (CNTRid, Sid_best, Priceid_best) where Sid_best
is the best scenario per contract and Priceid_best is the best price P
(CNTRid, Sid_best)

FOR EACH Scenario S:

 Retrieve InvoiceLines where Scenario is Sid and Billing Cycle in
[B1, … BN]

 Calculate Aggregate Prices by CNTRid: P(CNTRid, S)

 Calculate Distance of Sid from Best by CNTRid: Delta(CNTRid, S)
P(CNTRid, Sid_best) - P(CNTRid, S)

 Mean_Delta = SUM(Delta(CNTRid, S)) / (Number of Contracts)

 Return(S, Mean_Delta)

3.3.3.5 Social-network related functions

Functions, which require the identification and analysis of relations of contracts with
other contracts, are mentioned as social-network related functions. In previous
paragraphs, we have presented cases where the given contracts are not directly
referenced (as a list of contracts or as a reference to a customer), but they should be
extracted by querying the social network i.e. its representation graph.

For instance, the simplified input:

Given: CONTRACT in the Network of Contracts ()

is equivalent to a graph query:
Given: One Contract with CNTRid

Result: Get me the CONTRACTS [CNTR1 ….CNTRn] WHERE CNTRid is
directly linked to CNTR1 (CNTRid calls CNTR1) according to certain
criteria (i.e. Number of Calls > 4, every day including weekends,
total duration per day > 5 minutes)

Moreover, other social-network related functions are described below.

3.3.3.5.1 Key Customer Finding and Proposal Adjustment

The operator needs to identify certain contracts which can be characterized as key:

• Either weak because they are mostly calling non-subscribers according to certain
statistical criterion

• Strong, because they have heavy usage, calling other subscribers; or even they are
characterized as influencers according to social media analysis results

CoherentPaaS: Use Cases Design page 33/95

When a competitor’s offer appears, the operator needs to “protect” the weak part of his
customer base, as well as needs to find the best offer to make to them, and an
appropriate offer to make to the strong part of its customer base, in order to achieve the
most effective penetration of its offer.

A relevant query is described below:

Definition: The appropriate offer to make towards key customers upon the appearance of
a given competitor’s scenario. The idea here is to identify those key customer according
to social-network relations criteria (a graph query will be necessary here) and for those
customers, find the best scenario that achieves slightly lower charges than the simulated
charges for the new (the competitor’s) scenario. A more detailed definition is given
below:
GIVEN:

- Number of Billing Cycles: N or cycles in period [DDMMYY – DDMMYY]
or given billing cycles Β1, Β2,….BN

FIND: the “best” scenario offer to make to “key” contract owners against
a competitive scenario S

 FIND the KEY CONTRACTS and their Network

 FIND what all CONTRACTs in are paying under Scenario S
InvoiceCharge

FOR EACH KEY CONTRACT (or for each CONTRACT in)
 Find the scenarios that achieve charges for each contract to be

lower than and closest to (x%)of InvoiceCharges - and not lower
than (y%)of InvoiceCharges

Figure 13 below shows a similar case of a query, where actual and simulated charges are
ranked for a selected group of node numbers (those that are considered strong). This is
an intermediate step to identify and sort distances of actual scenario from a set of given
scenarios, i.e. a competitors’ ones.

CoherentPaaS: Use Cases Design page 34/95

Figure 13: Sort scenarios (among given list of scenarios) including the current plan based on the produced

charges for a set of “strong” numbers, as identified in the social network graph

3.3.3.5.2 Moving calls on-net

When an entity becomes a new customer, especially when that customer is a big one, it
might be the case that revenue will be affected significantly because this customer
(possibly with a large number of MSISDNS) was heavily called by the operator’s
subscribers. Such a case could be quantified and pre-calculated, before an offer is to be
made to this big customer.

Figure 14 illustrated such a case: Contracts A, B, C and D are charged X euros. How they
will be charged (in total and separately) if non-customers E and F switch to the same
network with A, B, C, D?

CoherentPaaS: Use Cases Design page 35/95

Figure 14: Moving calls on-net

The function will need to extract with graph queries the contracts who are calling the
contracts E and F, and then re-rate the usage when these two, will become on-net. An
indicative query is described below.

Definition: The target scenarios to offer to a new big customer. First we must identify the
level of effect on revenue, when this big customer is getting on the network; the callers of
him should be identified, and their usage should be recalculated, charges should be
simulated and compared to old ones, so that finally a target can be set that will be used
to find also the target scenario for the new customer. A more detailed definition is given
below:
GIVEN:

- Set of non-customer numbers [a…b]
- Number of Billing Cycles: N or cycles in period [DDMMYY – DDMMYY]

or given billing cycles Β1, Β2,….BN

FIND: the effect when Numbers [a,..b] becoming subscribers

FIND THE CONTRACTS:

 highly calling non customers

 according to the Network of Numbers () and their CDRs of
Billing Cycles in [B1,…BN]

FOR EACH KEY CONTRACT or for each CONTRACT in the Network of Numbers (

):

 Re-rate under the scenario that calls to [a,…b] are on-net calls

 Compare with ActualCharges and change in Revenues

 Find target scenarios

3.4 CDR Analytics: Expected Benefits
The most important benefits expected by our design are:

CoherentPaaS: Use Cases Design page 36/95

• Ability to utilize multiple stores efficiently; until now, tariff simulation development
cannot attempt to involve multiple types of datastores, though it is sure that for
certain cases, different stores are applicable and preferred in order to achieve the
best performance. Involving different technologies will increase complexity and will
require a unified framework to address all stores transparently; the need for
CloudMdsQL becomes apparent

• Ability to apply interactive functions; a feature which was not possible, but with the
appropriate datastore employment it can be accomplished. Efficient load of selected
usage data is one need, addressed already by first testing scenarios where the in-
memory solution has been used

• Ability to scale in cloud environments; increasing number of scenarios, number of
billing cycles and number of customers will not be an upper bound for the system.

3.5 CDR Analytics: Common CPaaS Components
A common component that could be utilized by other use cases is the filtering (or
grouping) operation based on a subgraph definition that is represented by a query (a
native one) in the graph database.

The component can be expressed as follows:
Filter from Datastore A columns <A…B> where column <C> belongs to
subgraph N (C, Cpeer,relation_condition) from DataStore B

The selection criteria are not the value of certain columns, but the participation of values
(or ids) in certain relations with certain criteria. As defined above, the filter includes those
columns that are having links in the subgraph definition; Cpeer can be a constant or can
be a variable node definition, depending also on the relation condition.

It is a very common need that can appear in many different contexts. For this, CPaaS
could simplify as much as possible the identification of such grouping which are members
of the same graph.

CoherentPaaS: Use Cases Design page 37/95

4 CLOUD TELECOM/M2M USE CASE – MACHINE-
TO-MACHINE

4.1 Μ2Μ: Use Case Overview
Vehicle/driver monitoring and sensing is one family of applications which falls in the M2M
area. Drivers, fleet owners, transport operations, insurance companies are stakeholders
which need to have analytical reporting on the mobility patterns of their vehicles, as well
as real-time views in order to support quick and efficient decisions towards eco-friendly
moves, cost-effective maintenance of vehicles, improved navigation, safety and adaptive
risk management.

Vehicle sensors do continuously provide data, while on-the-move, which are stored and
processed in order to provide valuable information to stakeholders. Applications identify
speed violations, abnormal driver behaviors, and/or other extraordinary vehicle machine
conditions, produce statistics per driver/vehicle/fleet/trip, correlate event with map
positions and route, assist navigation, monitor consumptions, and perform many other
reporting and alerting functions.

The main functionalities provided by the use case are:

• Analytics with variant types of aggregation logic: Average and absolute values in time
(speed, fuel, kms, …)

• Trip-level analysis: Identification of trips, the relevant trip data and production of
statistics on a trip basis

• Real-time monitoring and alerting: Production of current vehicle position and route
on the map. Production of real-time event notification upon the identification of
certain value conditions or upon geo-referenced data (i.e. vehicle is near a certain
Point-of Interest)

Data growth is experienced because of increase of sensed vehicles and devices. Processing
becomes more complex as the number of devices and measurements per vehicle
becomes larger and correlation among measurements is necessary in order to produce
informative results. The use case involves both the need for real-time processing and
instant response, as well as the need for extensive analysis on past data; queries should
be able to combine both real-time and past data.

The roles involved in this use case are the drivers, vehicle and fleet owners (companies,
car rentals, transport operators and logistics) and the service providers, mainly the
application provider and the PaaS provider. The latter can be enabler of several different
M2M applications, including the VTP use case.

4.2 M2M: Architecture Level
The architecture that is selected to implement our use – cases follows the principles of
lambda-architecture. It works with a data-store that is immutable, loaded with event
records received by the vehicles. It works in real time and calculates query results on top
of an incoming stream of data. Results, once computed, are stored in such a manner that
they can be queried by applications, at the analytical layer. Just as with the analytical
layer, the speed layer also stores results as they are computed into a view. The following

CoherentPaaS: Use Cases Design page 38/95

picture summarizes the main processes involved in a Lambda Architecture. The data
stream (e.g., vehicle events), which is the input of the loading process of the involved
datastores; the precomputed analytical view which is the minimum and optimized output
generated by the loading process for the queries invoked from the application; and the
precomputed real-time view, which include just those simple data that is ready to be
queried.

Figure 15: The Use Case Reference Architecture (Lambda Architecture)

The complete architecture is represented in Figure 15. Each enumerated component of
the architecture in the picture is described below:

1. All new data is sent to both the analytical layer and the speed layer. In the analytical
layer, new data is appended to the master dataset. In the speed layer, the new data is
consumed to do incremental updates of the realtime views.

2. The master dataset is an immutable, append-only set of data. The master dataset only
contains the rawest information that is not derived from any other information you
have.

3. The analytical layer precomputes query functions from scratch. The results of the
analytical layer are called "analytical views." The analytical layer runs in a while (true)
loop and continuously recomputes the analytical views from scratch. The strength of
the analytical layer is its ability to compute arbitrary functions on arbitrary data. This
gives it the power to support any application.

4. The serving layer indexes the analytical views produced by the analytical layer and
makes it possible to get particular values out of an analytical view very quickly. The
serving layer is a scalable database that swaps in new analytical views as they're made
available. Because of the latency of the analytical layer, the results available from the
serving layer are always out of date by a few hours.

5. The speed layer compensates for the high latency of updates to the serving layer. It
uses fast incremental algorithms and read/write databases to produce realtime views
that are always up to date. The speed layer only deals with recent data, because any
data older than that has been absorbed into the analytical layer and accounted for in
the serving layer. The speed layer is significantly more complex than the analytical and

CoherentPaaS: Use Cases Design page 39/95

serving layers, but that complexity is compensated by the fact that the realtime views
can be continuously discarded as data makes its way through the analytical and
serving layers. So the potential negative impact of that complexity is greatly limited.

6. Queries are resolved by getting results from both the analytical and realtime views
and merging them together.

Simplifying the overall design the main architectural components involved in our
implementation are depicted in Figure 16.

Figure 16: Architectural Components of M2M use case

As already stated we employ a layered system inspired by the Lambda architecture
concepts. Streaming data are flowing through the endpoint of our architecture funneling
into a distributed queuing system forming a collection mechanism which ensures that
data will be forwarded to the available processing components that implement the speed
and analytical layer respectively. Speed layer involves the usage of Storm a distributed
computation framework used to process streaming data in real time coupled with an in
memory key valued database used to store real-time views. On the other hand the
analytical layer ingests data from the master data set and creates the resulting analytical
views which will be then stored on the serving layer database. Accordingly the analytical
views and real-time views are then consolidated to produce the different visualizations
customizations needed for the various delivery systems.

4.2.1 Data Collection Architecture

Figure 17 illustrates the approach adopted to leverage the challenges of gathering data
from external systems. The selected architectural approach resorts to a modular
construction of a system that highlights loosely coupled components separated into
several conceptual tiers. Data are collected through TCP/IP connections that gather
events occurring at the edge of the system. The collection components are pre-existing

CoherentPaaS: Use Cases Design page 40/95

Netty3 servers which consume incoming streams of data via network, transform and
decode them, and then forward them to the next tier in our pipeline. At the next stage we
employ an integration framework such as Camel4 to seamlessly plug our data into the
queuing system component designed to handle the distribution of data. Data flow and
queuing semantics are handled by a Kafka5 system that employs a Kafka producer
implementation to distribute and organize data into several brokers, which are basically
physical servers that constitute the Kafka cluster. Note also that we use Zookeeper6 as
coordination server to manage the data flow of the entire system.

4.2.2 Storm Topology

The queuing system feeds the speed layer, where “kafka” spouts are receiving events and
emitting them into the Storm topology, which is illustrated in Figure 18, and represents
the full streaming computation. Spout forms the source of stream pulling the requests

3 Netty is an asynchronous event-driven network application framework: http://netty.io/
4 Camel empowers you to define routing and mediation rules in a variety of domain-specific languages:
http://camel.apache.org/
5 Apache Kafka a high-throughput distributed messaging system: http://kafka.apache.org/
6 ZooKeeper is a centralized service for maintaining configuration information, naming, providing
distributed synchronization, and providing group services: http://zookeeper.apache.org/

Figure 17: Gathering data from external systems

http://netty.io/
http://camel.apache.org/
http://kafka.apache.org/
http://zookeeper.apache.org/

CoherentPaaS: Use Cases Design page 41/95

from the queue and making tuples. Emitted tuples are grouped by the identificator of
devices (deviceId) and drivers (driverId) (Fields Grouping).

The first Bolt

• Persist events,
• Creates trips and
• Identifies Alerts.

A trip is defined by a pair of transmitted state messages that signal engine is on and
engine is off.

Every event is stored in the in memory data-store both as a standalone event and as a trip
event. Standalone events may be removed when periodical data have been computed
and stored in the analytical layer view. In case of Trips, every trip key in the Database
handles a sorted set of events that are related with it.

Alarms are published to User Interface as soon as they are identified. They are also stored
in the sorted set of their trip, available for future retrieval.

Figure 18: Storm topology

The high demand for real-time reads and writes asks for an in-memory OLTP solution.

CoherentPaaS: Use Cases Design page 42/95

4.2.3 Data Expiration

The architecture assumes two parallel mechanisms – the analytical and the speed layer –
creating the same views. In order for the query mechanism (of the serving layer) that will
rely on CloudMdsQL, to retrieve answers from both views and construct a complete
response, appropriate data from the speed layer should be removed. Therefore, a
continuous mechanism will remain live, that will discard data from the speed layer, under
the condition that the analytical layer has already computed the views including them. To
achieve this, the approach followed calculates a time interval for which it is safe to keep
data in speed-layer. This introduces redundancy as we need to keep two real-time views
and alternate clearing them after each analytical layer run. The flow and the views in time
of the expiration mechanism are illustrated in Figure 19:

Figure 19: Expiration Mechanism views flow.

4.3 M2M: Design Level

4.3.1 Requirements Context in numbers

As in D.9.1 “Use Case Requirements”, the basic quantitative indicators of performance
and success that need to be achieved through re-engineering of the use case are:

- Ability to handle each event at a time lower than 4 ms
- Multiply current throughput as much as possible; reach throughput equal to k X

120.000 events per hour, where k >=3
- Be linearly scalable (able to support 10.000 vehicles increase each year) which

means to maintain while load sizes become larger
- Growth of master data size : ~ 25 Gbytes per month (current size: 1 Tb)

To achieve as above, we need to abandon the current architecture (as described in D.9.1)
which features bottlenecks in the data layer, especially because statistical queries for
dashboard creation become more and more, data size has already increased to 1
Terrabyte (while growth will be accelerated) and reduce database performance into real-
time query needs. Latency for event handling is now: 10ms to route the message through
queuing system and 300ms for the overall handling, which becomes far from real-time as
sizes and query loads grow. It must be noted that statistics calculations locally at the car
device are very little, because data need to be sent as quickly as possible to the control
center (the fleet manager) where real-time views are required and to be correlated with
other event data.

The need to separate real-time context from the persistent data of events is apparent.
CEP will take over the real-time processing while analytical stores can efficiently respond
to the growing master dataset of events. But you need a way to join the two worlds into
one through a holistic transaction shell. CoherentPaaS promises to respond to this need.

CoherentPaaS: Use Cases Design page 43/95

4.3.2 Data Model

4.3.2.1 Generic Data Model

The reference data model consists of the main entities, which are the vehicles having also
drivers who are making trips. The vehicles are equipped with devices, which are the
producers of the centric data components, the events originated by the vehicle devices.
Events can trigger cases of alarms, as well as link to positions on the map, which can be
related to points-of-interest (POIs) or can signal the entrance into or leave out-of a
geofenced area. The network of data entities and the relevant associations among them
are visualized in the following Figure 20, including:

 Vehicles
 Devices
 Drivers
 Trips
 Positions
 Geofencing zones
 Points of Interest
 Alarm handlers
 Messages-Events

Figure 20: The participating data entities and their relations

Messages-events are appended into the master dataset within the architecture approach.
Other entities are reference data which are used to find parts of query parameters or
query responses and are primarily stored in relational database.

4.3.2.2 Master Dataset

The master data set is an immutable append-only data set where all event messages-
events are recorded as tuples. Indicative fields that are included in the event tuples of the
master data set are the following:

• Reception: reception datetime in local time
• GPS Date: GPS datetime of the event
• Type: message type. In this case, 0 means a standard tracking message.

CoherentPaaS: Use Cases Design page 44/95

• ID: unique device ID
• #: message numerator
• GPS: gps signal available (ex hibernation=not available)
• Flags: technical flags

Trigger: transmission reason (32=ip up, 44 tracking, 69=driving start, 53=driving
stop

• Km: mileage counter
• DriverID : driver identification
• Fix: Last GPS fix timestamp

o GPS1: gps quality information
o GPS2: gps quality information
o Sat: number of satellites used
o Long.: Longitude
o Lat.: Latitude
o Alt.: Altitude

• Speed: ground speed (km/h)
• Dir.: direction of movement

The indicative fields are the ones that will be mostly processed throughout the use case.
The event tuples includes many more fields of lees frequent use.

4.3.2.3 Reference Data

These are the fleet and driver’s data, the geoinformation and many other items of
information:

• POI, geofencing zones
• User entities
• Alarm handler/types
• …

They are mostly wanted to get data and supplement results with the necessary details.

4.3.2.4 Data Views – Speed Layer and Analytical Layer Views

The use case primary data are the events produced and recorded in the master data set.
The lambda-architecture will be continuously producing datasets, to construct the variant
data views, both in the speed layer and the analytical layer context, which need to be
prepared and be available for the queries to be performed.

The data entities that will represent the necessary views (the speed layer views and the
analytical layer views, the latter created by the continuous pre-computation process) are
presented below and summarized in the Figure 21.

CoherentPaaS: Use Cases Design page 45/95

Figure 21: Data Views Summary

All views are categorized as:

• Time views: updated periodically with metrics sensed
• State views: updated when an state change is recorded for a notable status

indicator
• Trip views: updated when an event is correlated within an ongoing trip
• Alarm views: updated when an alarm is produced

They are analytically described in subsequent paragraphs.

4.3.2.4.1 Views over time

Timely views will be created in the speed layer and precomputed in the analytical layer,
for specific metrics; they can be at more than one granularity levels (i.e. per hour, per
day, per month…). In our case:

• the hourly granularity will be mostly popular

• a daily granularity view will be also produced

Rolling up hourly values could provide the way to produce the daily values.

There might be queries which might need to access more than one view, i.e. when
requesting the kms covered from 20.Apr.2014 17:00 until 22.Apr.2014 23:00 will result in
the addition of two/three day values plus/minus hour values.

Timely analytical views will represent:

• the absolute value of metrics at specific periodical time points
• the calculated change of values (deltas) on each period
• the average/maximum/minimum metric value within each period

The following analytical-views are created, where cumulative values might in certain
cases also accompanied with Delta-values:

Running hours

 by hour [vehicle, daytime] #hours
 by day [vehicle, day] #hours

CoherentPaaS: Use Cases Design page 46/95

Kilometers

 by hour [vehicle, daytime] #kms, delta (#kms)
 by day [vehicle, day] #kms, delta (#kms)

Fuel consumption

 by hour [vehicle, daytime] #lt, delta (#lt)
 by day [vehicle, day] #lt, delta (#lt)

The table below provides an example part of hourly view of Kilometers, both absolute
and delta values. The part shows the view for a specific vehicle.7
Table 3: Hourly view of Kilometers for a specific vehicle

Vehicle Hour #Kms
HKH7561 30/4/2014, 16:00 165.678

HKH7561 30/4/2014, 17:00 165.686

HKH7561 30/4/2014, 18:00 165.686

Vehicle Hour Δ #Kms
HKH7561 30/4/2014, 16:00 …

HKH7561 30/4/2014, 17:00 8

HKH7561 30/4/2014, 18:00 0

HKH7561 30/4/2014, 19:00 18

Two views per metric will be necessary for these types of values and their timely views.

The following analytical-views are also created, where average/comparative metric
results are presented in time:

Average speed

• by hour [vehicle, daytime] speed

• by day [vehicle, day] speed

Maximum speed

• by hour [vehicle, daytime] speed

• by day [vehicle, day] speed

Two views per metric will be necessary for these types of values and their timely views.
There is no meaning for such values to record delta value.

7 The tables are showing the data views and not the way they are to be stored, in either a k-v store or a
columnar store which might be the actual case for most metrics.

CoherentPaaS: Use Cases Design page 47/95

4.3.2.4.2 State Views

State views will be recorded in real-time as well as precomputed in the analytical layer;
the application needs to record only the changes of status along with the associated time
they happened. The most recent state must be kept and updated in order to decide if a
state-row must be inserted to indicate status change

The most critical change of status is related to the engine ignition on/off, which also
signals the start and end of a trip. Two views will be necessary for the engine status.
However, as “on” and “off“ changes of status are paired to form a trip, the trip views also
keep the start and end time of a trip (which is the on-daytime and the off-daytime)

Engine State

• On-view [vehicle] daytime

• Off-view [vehicle] daytime

Other state views are related to the seat belt:

Seat-belt State

• Set-view [vehicle] daytime

• No Set-view [vehicle] daytime

Other state views are showing the status of the generator, the temperature sensor, etc.
For each state metric, a set of views will be computed at the analytical layer, depending
on the number of the state values.

4.3.2.4.3 Trip Views

The system must also create and “precompute” the trip views and provide values also at
“trip-granularity” level. This means that trips must be identified and values which are
measures over time should be also recorded at trip level. Positions view will be also
integrated in trip views.

Pairing on-off state changes of can engine ignition signals a trip. The process should
record vehicle values at trip start and trip end, compute delta-values, compute average
and maximum values and record list of positions within the trip.

Trip view is a table of trip entries, each one containing the following:

Trip

• Car engine on time
• Car engine off time
• trip id
• mileage per trip
• Hours per trip
• avg speed per trip
• max speed per trip
• position list per trip

Another view is keeping only the current trips. This is a view maintained only in the speed
layer.

CoherentPaaS: Use Cases Design page 48/95

4.3.2.4.4 Alarm Views

As alarms are produced, they are stored into alarm-type specific view. The system must
also precompute relevant analytical-views

Alarm

One view will be created per alarm type i.e. speed violation, geo-fencing alarm, un-
authorized move, un-authorized driver, etc.

• Alarm [vehicle] alarm_value(s)

4.3.2.5 Data Stores to use

To persist the data related to these concepts and views we suggest to use different
datastores to reduce the number of I/O operations and maximize performance; the
selected solutions are listed below, ranked according to their importance in the use case:

• Complex Event Processing: Το achieve reception and processing of vehicle events
at high throughput; Storm framework will be utilized for scalable and fault –
tolerant data reception

• In-memory OLTP: Derby will be utilized, to persist real time data views, as
described in previous sections. The most recent data will be cached there, for
quick views on present vehicle status and ongoing trips. Other data which need to
be always fetched rapidly might also be stored in an in-memory solution (i.e.
alarm handler data, as they are necessary in order to in real-time identify possible
alarms)

• Columnar: To persist the master data set and analytical layer views where
aggregated data and analytics need to be produced, as described in previous
sections. Different types of columnar stores might be appropriate, due to the
high volume demand of the master dataset which demands for a distributed file
system. MonetDB and Hbase will be challenged through the use case.

• RDBMS: To persist basic reference data and configuration metadata required to
return as part of the projection of a given query, i.e.

 Drivers (DriverID, Name, Surname, …)

4.3.3 Overall Architecture – CoherentPaaS role

Having analyzed the various datasets, it is evident that apart from the basic data (events
and reference data) the use case relies upon the continuous production and update of
several data views, residing in both analytical and in-memory solutions (for the real-time
data requirements). Therefore we foresee CloudMdsQL layer receiving query requests

• To access data views from both the speed and the analytical area
• To create and update the data views, based on the data output of the stream

processing by the CEP frame and the raw data.
• To combine results, with required data which are available within relational

database or in cache.

CoherentPaaS: Use Cases Design page 49/95

Figure 22: Vehicle Telematics with CPaaS Architecture

The Figure 22 above shows this dual role of CloudMdsQL, as facilitator of application
queries and facilitator of core data maintenance functions. Simplification of code, speed
acceleration and reliability of real-time data are the mostly wanted features expected
from this setup.

4.3.4 Functional Components

The functional categories are the following:

• Dashboard – viewing consolidated information in real time for several metrics for
a specific entity (vehicle, driver or group of vehicles). Alarm information should
also be given.

• Trip Queries – viewing information for trips (current and past trips, statistical
views of trips)

• Positions Map – aiming to show the positions of a vehicle on the map, and
continuously update it. Relevant POIs and geo-fencing alarms should be noted.

• Activity Diagram – viewing the activity of a vehicle in time.

Queries are involved in each application family; the most representative will be described
below. Queries concern a vehicle, a driver, company or other groups of similar entities.
Several queries will need to use different datastores simultaneously. Having CloudMdsQL
will simplify the code of integrating result sets of different datastores. The following
subparagraphs describe these functionalities and the representative queries as required,

CoherentPaaS: Use Cases Design page 50/95

as well as the involved datastores. For simplicity, we do not replicate query description
and definitions when we change the applied entity.

4.3.4.1 Dashboard

Information must be consolidated to produce dashboard like:

• Cumulated distance
• Mean speed, max speed
• Driving time, stop time, idling time, …
• Fuel consumed
• Safety scoring

Figure 23: The Vehicle Telematics M2M Case – Dashboard

Dashboards can be built:

• for all vehicles, a group of vehicles, one vehicle
• for a fixed period (this day, this week, this month, this quarter, …) or for a dynamic

period, with a breakdown by hour, by day, week, month, …including also real-time
views

4.3.4.1.1 View progress of metrics in past interval or now

• Hourly or daily views of kms, consumption, driving time for a given interval
For instance the query below provides the hourly kilometres on an hourly basis for
a given vehicle within a time period (from T1 to T2)

GIVEN:

- Period [T1, T2]
- Vehicle Vid

FIND: distance per hour

 SELECT Kms-metric, Hour

FROM (kms_hourly view_Analytical
WHERE Vehicle is Vid And Hour is in [t1, T2])

CoherentPaaS: Use Cases Design page 51/95

SELECT Kms-metric, Hour

FROM (kms_hourly view_Speed
WHERE Vehicle is Vid And Hour is in [t1, T2])

 Calculate delta-change in each hour

The same query is planned as in Figure 24:

Figure 24: Union of query results from speed and analytical datastores: Dashboard query

This is a frequent query plan for this use case, as it provides the union of results
extracted from the two layers. It will be seen in many subsequent query examples.

• Hourly or daily views of avg speed, max speed for a given interval
• Daily cumulated distance

4.3.4.1.2 View statistics

• Fuel consumption per kilometer for each vehicle/driver (a sorted list)
• Total kms per driver or per vehicle
• Driver details sorted by their fuel/km consumption, as in query example described

below:

GIVEN:

- Period [T1, T2]
- A list of vehicles [V1, Vn]

FIND: provide driver details sorted by their fuel/km consumption

 SELECT DriverID, sum(Mileage), sum(FuelConsumption)

FROM (FIND Trips for Period [T1, T2] in TripView_Analytic

WHERE VehicleId IN [V1, Vn]

 GROUP BY DRIVER ID

CoherentPaaS: Use Cases Design page 52/95

SELECT DriverID, sum(Mileage), sum(FuelConsumption)

FROM (FIND Trips for Period [T1, T2] in TripView_Speed

WHERE VehicleId IN [V1, Vn]

GROUP BY DRIVER ID

 ORDER By sum(Fuel)/sum(mileage)

 GET THEIR Phone Numbers

4.3.4.1.3 Alarms given – past and real-time

• List of alarms in given interval
• Find a specific alarm type
• Find vehicles that produce a specific alarm within a given interval
• Alarm view in-real time
• Find number of alerts raised per day

4.3.4.2 Trip Queries

The trip is the most substantial concept within vehicle telematics applications.
Henceforth, queries at trip level should find information for specific trips, the current
trips, past trips, as well as provide statistics for trips.

The queries described below will correspond to a specific vehicle, a specific driver or even
a group of them (a fleet, a company).

A complete trip information (trip profile) should consist of a set of values as listed below:

• Time trip started

• Time trip ended

• Distance covered

• Time duration

• Average Speed

• Maximum Speed

• Fuel Consumption

List of positions could be also included in case the application demands to re-create the
trip on a map.

4.3.4.2.1 Current Trip Information

• Find Current On-going trip(s)
• Provide in-real time the current trips profile
• Find the telephone numbers of trip drivers now in the GeoFenced Area, as in

query example described below:

GIVEN:

- Geofenced Area [(x,y) ….. (x,y)]

CoherentPaaS: Use Cases Design page 53/95

FIND: the telephone numbers of trip drivers now in the GeoFencedArea

 SELECT DISTINCT DriverID from TripView_Speed

WHERE Last_Position falls in Geofenced_Area

FOR EACH DriverID

 Retrieve the Driver Phone Number from DRIVERS

4.3.4.2.2 Trip Statistics

• Find trips and trip information for all trips
• Find the average maximum speed of all trips of driver X
• Find kms
• Find the longest trips. Sort trips by distance covered
• Find the average distance of trips
• Find the trip with the highest consumption
• Find the fastest driver over trips within a given interval
• Find the maximum speed per trip for all trips of a given vehicle that started after

T1, as in query example described below and illustrated in Figure 25 :

GIVEN:

- Vehicle: Vid or Driver: DRid
- Time: T1

FIND: max speed per trip for trips that started after T1

 SELECT TripID, MaxSpeed from TripView_Speed

WHERE Vehicle is Vid and Time Trip Starts >=T1

SELECT TripID, MaxSpeed from TripView_Analytic

WHERE Vehicle is Vid and Time Trip Starts >=T1

CoherentPaaS: Use Cases Design page 54/95

Figure 25: Union of query results from speed and analytical datastores: Trip query

• Find kms per driver
• Find the trips per driver within a given interval
• Find the telephone numbers of trip drivers travelled since T1, as in query example

described below:

GIVEN:

- Time: T1

FIND: the telephone numbers of trip drivers travelled since T1

 SELECT TripID, DriverID from TripView_Speed

WHERE Time Trip Starts >=T1

DistinctDriverIDs

SELECT TripID, DriverID from TripView_ Analytic

WHERE Time Trip Starts >=T1

FOR EACH DriverID

 Retrieve the Driver Phone Number from DRIVERS

CoherentPaaS: Use Cases Design page 55/95

The execution plan of such query is also illustrated below, in Figure 26:

Figure 26: Getting the driver details for a given union result of trips

4.3.4.3 Positions Map

Query results will be delivered to the Web user interface to produce real time map with
the trip of the sensor. The positions are updated in a map as soon as they are received.

Figure 27: The Vehicle Telematics M2M Case - Mapping New Positions

Positions should be examined, to check relevance to one or more POI, as well as whether
a geo-fenced area is entered or exited.

4.3.4.3.1 List of Positions – Past and real-time

• Find list of positions within a given time interval
• Real-time positions of a vehicle/driver
• Find give positions of vehicle from T1 till NOW

CoherentPaaS: Use Cases Design page 56/95

4.3.4.3.2 POIs

• Find which vehicles are near a POI / got at a POI within a time interval
• Produce an alarm when position is at POI

4.3.4.3.3 Geofencing event

• Produce an alarm when position is entering a geo-fenced area
• Produce an alarm when position is exiting a geo-fenced area
• Find vehicles / drivers / trips who entered an area within a given interval
• Find the telephone numbers of trip drivers now in the GeoFenced Area
• Find time stay within a geo-fenced area

4.3.4.4 Activity Diagram

The activity (stop, driving, idling …) of a sensor must be updated on real time and query
results could present the vehicle activity in time, its current status, as well as, states for
other vehicle components.

Figure 28: The Vehicle Telematics M2M Case - Monitoring Sensors.

4.3.4.4.1 Engine status time diagram – past and real-time

• Get the engine on-off state changes within a given time interval
• Get the real-time view of engine on-off state

4.3.4.4.2 Find drivers with seat-belt off – past and real-time

• Find the drivers who have made trip at intervals where seat-belt has been found
at off-state

• Produce real-time alarms upon drivers putting belt at off-state while on-trip.

4.4 M2M: Expected Benefits
The existing architecture imposes serious shortcomings, especially in respect to the ability
to accommodate increasing needs, in terms of message throughput, analytical query
execution and real-time alarm identification and handling. Therefore, the proposed
approach:

1. Moves all processes and store facilities into cloud cluster settings,
2. Separates real-time processing from analytical oriented processes
3. Enables the union of the real-time context with the past data results, when that is

required

CoherentPaaS: Use Cases Design page 57/95

4. Selected the best appropriate data store framework for each data set according to
the data needs

Separation of the real-time context and utilization of different data technologies, from
Complex Event processing and fast OLTP to analytical databases, will be facilitated
through CPaaS. In that context the ability to handle larger message throughputs as
number of devices increases will not be affected by the load of user queries and
dashboard views.

Apart from the above, more queries will be defined that will satisfy important business
needs. Raw data will be processed efficiently so that the notion of trips will be stored and
trip statistics will become also available. In that context, the real-time processing does not
only facilitate the creation of real-time views and alarm handling, but they can also
supplement raw data with additional information when that is necessary (in case of trip
identification, assignment of trip identification to events is a useful data enrichment,
filling the gap of sensor data).

4.5 M2M: Common CPaaS Components
An interesting common component that the use case needs is the union operation among
the results of two queries, as applied into two parallel data stores (in our case, the one
with the real-time data and the one with the analytical data). The union could be
facilitated as one operation.

The union result could define the new column name and the names of columns from the
two participating query results which are associated to the new column name. Renaming
of columns makes sense when the names are different across different data stores;
otherwise they keep the same name also in the union result. For instance, if I want to get
the names and addresses from two different stores (DS1 and DS2) of different type that
satisfy a certain criterion A in DS1 and criterion B in DS2, and get the result onto the same
data table for further processing. I need the union of two query results, the named
queries Query1 and Query2. In DS1 the names and addresses are under columns named:
Name and Address, while in DS2 they are under the columns named: NameId and
LocationAddress.

I.e. The hypothetical component for union of queries (named UnionQ in this example) is
defined by its column names and the participating queries, each one accompanied with
any necessary renaming:

UnionQ (Name, Address; Query1, Query2 (NameID to Name, Address to
LocationAddress))

It is explained in the Figure 29 below:

CoherentPaaS: Use Cases Design page 58/95

Figure 29: CPaaS Union Operation

CoherentPaaS: Use Cases Design page 59/95

5 MEDIA PLANNING USE CASE

5.1 Media Planning: Use Case Overview
Millions of people communicate each other using social network (e.g. Twitter, Facebook,
WhatsApp, blogs, forums, e-mail, and so on). Daily, these social platforms produce huge
amount of data that is very interesting for marketing purposes, but cannot be analyzed
with traditional technologies.

In the most popular social networks, the analysis of registered messages allows to know
the public brand perception and then perform corrective actions through the social
networks to change it, such as designing effective marketing campaigns, analyzing your
target audience classifying it by roles or predicting the impact of a given communication
with the most influencers in a given topic/community.

The main operations included in this use case are as follows: retrieve the most
influencers, retrieve the most important communities and add new documents
(messages) in real time. The main stakeholders involved are: community managers,
marketing vendors, cloud systems providers, technology providers and data providers.

5.2 Media Planning: Architecture Level

The Media Planning Architecture is a Lambda Architecture, because it works with a data-
store that is immutable. An immutable data store essentially eliminates the update and
deletes aspects of CRUD, allowing only the creation and reading of data records. It works
in real time and calculates query results on top of an incoming stream of data. Results,
once computed, should be stored in such a manner that they can be queried by
applications. Just as with the analytical layer, the real-time layer also stores results as
they are computed into a view.

The main processes involved in a Lambda Architecture are: the data stream (e.g., tweets
emitted in real time), which is the input of the loading process of the involved datastores;
the precomputed analytical view which is the minimum and optimized output generated
by the loading process for the queries invoked from the application; and the
precomputed real-time view, which include just those simple data that is ready to be
queried. The main architectural components involved in the loading process are Trident
and Storm because these offer a framework to have a scalable loading architecture with
real time queries over the processed data.

The application is a REST API containing the queries about communities and influencers.
This REST API is exposed through a HTTP server and the queries are designed using a MVC
framework called XWork because it is completely decoupled from the HTTP layer and
then, the whole workflow can be executed without having on an HTTP infrastructure.
XWork contains a Dependency Injection component to avoid creating factories and
manage different implementations of the same interface. XWork also provides
Interceptors to offer a way to configure pre and post processes before applying a request
and avoiding aspect oriented programming.

The application and the loading process are connected by the data stores because these
are shared resources.

The following diagram shows the main components of the described architecture.

CoherentPaaS: Use Cases Design page 60/95

Figure 30: Architecture Main Components

Specifically, the XWork framework works as follows. The public API is configured by
means of an XML configuration file called xwork.xml. This configuration file allows
defining actions, a mapping between a simple name and a java class. Actions represent
requests. Through this configuration file, users can parameterize the CDI parameters and
define the set of interceptors applied for each action. So, when a REST endpoint is
invoked, the application creates a specific action invocation. Once an action invocation is
resolved the configuration part related to this action invocation is instantiated. The
workflow continues as follows: interceptors are executed to apply all preprocesses, then
the action and the result (a component to process the results offered by the action, e.g.
printing them into the http response as a JSON object). Finally, all interceptors finish to
apply post processes.

Figure 31: XWork work flow

CoherentPaaS: Use Cases Design page 61/95

From the physical point of view, the application needs three main clusters: one for the
loading process (Storm), another one for the REST application and finally another one for
the CloudMdsQL, the query engine cluster. On the other side, users need to have a partial
view of the whole information and therefore, probably it will have implications in the final
physical datastores that run on over the CloudMdsQL.

Figure 32: Media Planning Architecture

5.3 Media Planning: Design Level

5.3.1 Data Model

In the Social Media use case, the main concepts involved are documents (e.g.
microblogging messages), their references and copies (e.g. retweets), the authors of
these documents of the referenced people called entities, the location of this people and
the topics employed as tags in the existing documents.

CoherentPaaS: Use Cases Design page 62/95

Figure 33: Main Components in the Social Media Use Case

To persist the data related to these concepts we suggest using different datastores to
reduce the number of I/O operations. They are listed below, ranked by their
importance in the use case:

• Graph: To persist all relationships used for filtering purposes (e.g. to improve
future updates efficiently avoiding scans and multiple queries).

 Copies, References.

• Documental: To persist all data which could have a flexible size (e.g. text).

 Document (id, text, follows, topics)

• Key Value: To persist list of complex items (more than one basic field) related with
a given key that need to be analyzed in the same time during the query.

 Tags: topic as a key and tag (entity, document) as a value.

• RDBMS: To persist all basic data required to return as part of the projection of a
given query.

 Document (id, date, channel)

 Publishes (idDoc, idEntity)

 Entity (id, name, screenName, registrationDate).

During the loading process there are more types of information inferred and used in a
real time by the designed queries. These types are: influences between entities
(INFLUENCES_TO), influencers of a given keyword (INFLUENCES_ABOUT), the weight of a
keyword for a given document (INFERRED_KEY), and which document is the result of the
propagation of another one (PROPAGATES_TO).

CoherentPaaS: Use Cases Design page 63/95

Figure 34: Loading Process

To persist the data related to these concepts we suggest using different datastores to
reduce the number of I/O operations. They are listed below, ranked by their
importance in the use case:

• Graph: To persist all relationships used for filtering purposes (e.g. intersections
and unions). Specifically to infer communities and propagation trees.

 INFLUENCES_TO, PROPAGATES_TO.

• Key Value: To persist list of complex items (more than one basic field) related with
a given key that need to be analyzed in the same time during the query.

 INFLUENCES_ABOUT: keyword as a key and entity with a weight as a value.

 INFERRED_BODY: keyword as a key and documents with a weight as a
value.

Figure 35: Relationships used for filtering purposes

To persist the data related to these concepts we suggest using different datastores to
reduce the number of I/O operations.

• Graph: To persist all relationships used for filtering purposes (e.g. intersections
and unions.

 INFLUENCE, INFLUENCER, INFLUENCED, MEMBERS.

• Key Value: To persist list of complex items (more than one basic field) related with
a given key that need to be analyzed in the same time during the query.

 CLASSIFIES: keyword as a key and communities with a weight as a value.

5.3.2 Functional Components

The main functionalities provided by this use case are:

CoherentPaaS: Use Cases Design page 64/95

• Who are the most influencers?
• Which are the communities around a set of keywords?
• Adding new documents

All functionalities use different datastores simultaneously. So, having CloudMdsQL
simplifies the code of integrating result sets of different datastores. The following
subsections describe the formal definition of each functionality and the involved part of
the schema of each datastore.

5.3.2.1 Who are the most influencers? (QUERY)

Definition: The 10 most influencers about a list of topics sorted by the sum of their
probabilities in each topic. For each entity, the system shows:

• The number of (potential) influenced entities
• The maximum propagation graph
• All their basic fields: id, name, date.
• The last published document: id, text, date, total of propagations, channel,

number of copies and number of references.

Queried types: INFLUENCES_ABOUT (key value), Document, PUBLISHES, Entity (RDBMS
and documental), COPIES (graph), REFERENCES (graph) and PROPAGATES (graph).

The final execution plan of this query should return the same registers as this one:

Figure 36: The most influencers query decomposition

CoherentPaaS: Use Cases Design page 65/95

5.3.2.2 Which are the communities around a set of keywords? (QUERY)

Definition: The 10 biggest communities for a given set of keywords. For each community,
the system must return the 20 most influencers inside the community by microblogging
documents. For each member, the system shows:

• The number of (potential) influenced entities inside the community.
• The maximum propagation depth.
• All their basic fields: id, name and date.
• The last microblogging published document: id, text, date, number of

propagations, channel, number of copies and references.

Queried types: INFLUENCER, INFLUENCED, MEMBERS (Graph), MEMBERS (Graph),
CLASSIFIES (key value), Document and PUBLISHES (RDBMS and Documental).

The final execution plan of this query should return the same registers as the following
one.

Figure 37: Communities for a given set of keywords query decomposition

5.3.2.3 Adding new documents (UPDATE)

The system needs to add all related basic and inferred information of a given document.
In this process, influence relationships and communities are periodically executed. All this
information needs to be precomputed to perform fast queries in real time. So, every
datastore must be fed with the necessary data to simplify published queries.

Specifically, the system has to do:

CoherentPaaS: Use Cases Design page 66/95

• A deduplication process because documents may come from different
communication channels.

• Text normalization to improve the quality of the further analysis.
• The document indexation
• Detect propagations among the new documents and the existing ones.
• Detect influence among people by their documents and calculate the communities

produced by these relationships.

We describe how we will compute some of these steps.

Deduplication process

The deduplication process consists of process the author name using different criteria
(exact value, initials, inverse and random letters) and create different blocks of data with
a fixed length and compare between them to solve which registers may represent the
same entity. We will use different algorithms, like the Levenshetein distance, to resolve
how similar all pairs of registers are inside each block. Those registers that are more
similar than a given threshold will be unified into the same entity.

Figure 38: Deduplication process

Document indexation

The document indexation consists of splitting by spaces the documents’ text into tokens
and calculate the relative weight of each word(token) for the document and the global
weight to calculate the TF-IDF (Term frequency – Inverse document frequency). This
calculus is a well-known approach to resolve which documents are similar to a given
document and then. The documents comparison is a subpart of the algorithm that
resolves the implicit propagations produced by documents that appear in different
communication channels.

For efficiency quality and efficiency issues, we also will perform the same calculus for
trigrams (words of 3 tokens).

The following workflow describes how this calculus can be performed with Storm/Trident.

CoherentPaaS: Use Cases Design page 67/95

Figure 39: Document indexation

Detect influence relationships

Once propagations are calculated and all explicit relationships in a social network are
stored (e.g. copies and references among documents), we create influence relationships
between the authors of each pair of documents linked by any of type these relationships
(propagates, copies and references) and use them to compute the communities that they
produce.

Communities are detected through the influence relationships produced under just those
documents that share some keyword. Finally, the computed communities are indexed by
the keyword.

The following workflow describes how we can implement this process using
Storm/Trident.

Figure 40: Detect influence relationships

5.4 Media Planning: Expected Benefits

Nowadays, we have an existing system for Acceso and Media Planning Group with similar
queries that is completely build just using a graph database and a documental database.

However, the current design is not scalable and has no transactions. Also, we expect
having different datastores with more appropriate structures for each scenario increase
queries throughput. Also, a key component is the Holistic Transaction Management

CoherentPaaS: Use Cases Design page 68/95

which allows to manage the consistency among different datastores. However, according
to the document 9.1, our expected performance benefits are as follows:

Main
Require
ments

Name Brief Description
Acceptable

metric

Target

Metric

Req.01
MAXIMUM_
DOCS_PER_D

AY

The system must be able to
load 1 million of documents

in less than 12 hours.

12hs < 12hrs

Req.02
MAXIMUM_T
IME_PER_QU

ERY

The system must be able to
solve all analytical queries

in less than 1 minute.

1 minute 2 sec.

5.5 Media Planning: Common CPaaS Components

We have identified a set of components that can be shared across different use cases that
have a similar architecture:

• Trident-CloudMdsQL: Trident provides a way to design transactional analytical
processes with Storm to compute aggregates (scores). It is very common to create
trident plugins to make persistent queries and aggregates inside a trident topology
for a specific data store. So, we suggest creating and sharing a trident plugin to
work with the CloudMdsQL engine.

• Storm components: Storm has a set of different types of components: bolts,
spouts and aggregators. So, those components related with the document
indexation and the social network streaming APIs can be shared.

• Xwork-cloudMdsQL: XWork has a pluggable architecture and then interceptors,
actions and results can be shared across different use cases. We suggest creating
and share a Xwork-cloudMdsQL plugin to inject the query engine into the actions
MdSQL and to manage the transaction workflow before executing an action.

CoherentPaaS: Use Cases Design page 69/95

6 REAL-TIME NETWORK PERFORMANCE ANALYSIS IN

A TELCO ENVIRONMENT USE CASE

6.1 Telco Network Performance Analysis: Use Case
Overview

The objective of the Real-Time Network Performance Analysis in a Telco Environment use
case is to detect network problems before any degradation or unavailability of services
occur, by actively supervising it. However, monitoring the whole network implies
analyzing big amounts of data in real-time and the current solution does not provide the
required degree of scalability that can be found in cloud environments. The existing end-
to-end (E2E) system, called Altaia, actively detects deterioration in a network using
almost real-time KPIs and key quality indicators (KQIs), finds the cause of performance
problems and the produced data is always ready to be analyzed through reports and
dashboards to check the network’s performance. These reports can be tailored to further
analyze the network’s performance by creating ad-hoc queries and accessing the data
that originated the calculated indicators.

The plan is to use CPaaS to provide a rich Platform-as-a-Service that supports several data
stores accessible via a uniform programming model and language. Based on an analysis of
data access patterns from the use case data store layers - DBN0 is composed of non-
normalized tables that are used to store the same type of data, i.e. raw data, and DBN1 is
used to store only aggregated data, i.e. calculated KPIs and KQIs, using a star schema -,
different data store alternatives will be accessed and the most adapted will be applied.
The CPaaS based platform will have to comply with demanding delay, throughput and
data volume requirements. Additionally, CPaaS will keep the needed traceability of
performance bottlenecks and debugging of errors in applications.

6.2 Telco Network Performance Analysis:
Architecture Level

Altaia is an end-to-end (E2E) system which actively detects deterioration in a network
using almost real-time KPIs (Key Performance Indicators) and KQIs (key quality indicators),
finds the cause of performance problems and the produced data is always ready to be
analyzed through reports and dashboards to check the network’s performance. These
reports can be tailored to further analyze the network’s performance by creating ad-hoc
queries and accessing the data that originated the calculated indicators. It is divided in
four main modules - Mediation, Correlation, Framework and Portal - and two database
layers - DBN0 and DBN1 - as illustrated in Figure 41.

CoherentPaaS: Use Cases Design page 70/95

Figure 41: CoherentPaaS adapted Altaia Architecture.

• The Mediation module collects data from various sources using several plugins and
can enrich the data

• Correlation module, which will be integrated in the system, will use the
CoherentPaaS’ CEP engine to detect call drops, collision and to calculate real-time
performance indicators. The generated complex events will be fed directly to the
Altaia Framework to generate alarms

• The DBN0 mainly stores raw data collected from the network and DBN1 the
calculated key performance and quality indicators (KPIs and KQI) from the DBN0
data

• The Framework module is the point where all the KPIs and KQI are produced and
transformed for several types of analyses. It reads the data (stored in the DBN0s
and other metrics stored in the DBN1) in batch in well-defined periods of time and
the produced KPIs and KQIs are then stored in batch into the DBN1, where they are
accessible to the Altaia Portal module. During KPIs and KQIs calculation, this module
is also responsible for evaluating pattern deviations through fixed and dynamic
thresholds

• The Portal module is responsible for analyzing the key indicators from the DBN1
data stores and presents them in reports or in real-time dashboards. It also enables
drill-to-detail querying of DBN0 data stores when the analyst needs to consult the
data that generated the key indicators

6.3 Telco Network Performance Analysis: Design
Level

6.3.1 Requirements Contextualization

We will start this section by discussing the delay, throughput and data volumes that the
data stores are required to support, in order to be deployed and used in this use case.

DBN0

DBN1

Altaia Portal

Altaia Mediation

Altaia Framework

DBN0 DBN0

DBN1DBN1

Loader&
Thresolds &
Event Manager &
Colector

Altaia Correlation

CoherentPaaS: Use Cases Design page 71/95

OFrom these, we will be able to discern the adequate data stores for each database layer
(DBN0 and DBN1) of the use case.

In terms of delay, the goal response from queries:

• Must not exceed 2 minutes to insert data in the DBN0 and DBN1 and to read data
from the DBN0 to the Altaia Framework;

• Not greater than 1 second when the read operations are executed from the Altaia
Portal module (or equivalent).

• Regarding the CEP engine, it must be capable of consuming and producing events
every second.

Regarding satisfactory response times, they can be roughly twice the goal of the above
stated delay values.

On the subject of data volumes, we start by defining the record sizes and the average
number of records handled per hour and per day. These values can be found in Table 4
for DBN0 and Table 5 for DBN1 and are used to calculate the average daily data volume
and throughput. We provide the record sizes with and without the current index
overheads. As our current design of the DBN1 database uses a star schema, we provide
the number of dimensions for each table as well.
Table 4: DBN0 table metadata

DBN0 # table
columns

KBytes per record
(TOTAL)

KBytes per record
(table data)

KBytes per record
(index)

records / hour
(AVG)

records / day
(AVG)

VOZ_2G 169 1,40 1,20 0,20 1650000 39600000

VOZ_3G 203 1,70 1,50 0,20 1380000 33120000

Table 5: DBN1 table metadata

DBN1 # table
columns

Table
dimensions

Metrics
in the table

KBytes per
record
(TOTAL)

KBytes per
record (table
data)

KBytes per
record
(index)

records /
day (AVG)

F_TRF_ACCOUNT_AG1 27 4 23 1,98 1,79 0,18 4600

F_TRF_ACCOUNT_AG2 31 8 23 0,59 0,24 0,36 1780000

F_TRF_ACCOUNT_AG3 31 8 23 0,72 0,31 0,41 3040000

F_TRF_SACCOUNT_AG1 28 5 23 0,38 0,19 0,20 123000

F_TRF_SACCOUNT_AG2 32 9 23 0,66 0,26 0,39 1900000

F_TRF_SACCOUNT_AG3 32 9 23 0,79 0,34 0,45 3100000

F_TRF_USER 41 18 23 1,28 0,56 0,72 53000000

F_TRF_USER_AG1 29 6 23 0,47 0,17 0,29 39170000

F_TRF_USER_AG4 30 7 23 0,60 0,21 0,39 39170000

From the tables above, we calculated the data volume that the data stores must be able
to handle to support the use case. Note that we used the record sizes without the index
overhead and we applied two different multipliers to the data:

• A 3 times multiplier to update the values for the customer quality management
scenario;

• A 10 times multiplier to update the values for a tier 1 network operator.

Table 6 indicates the daily volume stored in the DBN0 in total and without the indexes
overhead and Table 7 shows the same values for DBN1.

CoherentPaaS: Use Cases Design page 72/95

Table 6: DBN0 data volume with scaling multipliers

DBN0
(w/ multipliers)

Daily volume
(GBytes TOTAL)

Daily volume
(GBytes TABLE)

VOZ_2G 1586,15 1359,56

VOZ_3G 1610,87 1421,36

TOTAL 3197,02 2780,91

Table 7: DBN1 data volume with scaling multipliers

DBN1
 (w/ multipliers)

Daily volume
(GBytes TOTAL)

Daily volume
(GBytes TABLE)

F_TRF_ACCOUNT_AG1 0,261 0,236

F_TRF_ACCOUNT_AG2 30,046 12,222

F_TRF_ACCOUNT_AG3 62,622 26,962

F_TRF_SACCOUNT_AG1 1,337 0,669

F_TRF_SACCOUNT_AG2 35,877 14,133

F_TRF_SACCOUNT_AG3 70,066 30,155

F_TRF_USER 1940,918 849,152

F_TRF_USER_AG1 526,711 190,513

F_TRF_USER_AG4 672,398 235,339

TOTAL 3340,237 1359,381

Considering a scenario of in-memory data store, we determined that:

• The amount of data to be stored should be the most frequently accessed;
• Aim for a high hit ratio for the executed queries from the Altaia Portal or an

equivalent component.

Table 8 shows the data volumes frequently accessed in the different aggregation modes,
which are available to solve performance issues of the current relational solution.

Table 8: Frequently accessed data volume

Query time range Aggregation Available time range Most accessed data volume
4 hours 5 minutes 7 days 945 GB
2 days 1 hour 7 days 620 GB

2 months 1 day 1 month 1.35 TB

To calculate the throughputs (Table 9) that the datastores must be able to achieve, in
order to handle these amounts of data volumes, we determined the daily volumes
calculated for each data store layer, without the indexes overhead. We provide the
insertion and the selection throughput in KB/s for each data store layer. Note that we
added a 2 times multiplier for the insertion in the DBN1 data store, to account for
recalculations for an already calculated time period, that might occur due to late data
being inserted into the DBN0.

CoherentPaaS: Use Cases Design page 73/95

Table 9: Required Data throughputs

Throughput DBN0 DBN1

Insertion (MB/s) 32 32

Selection (MB/s) 64 (300 records/sec)

Table 10 identifies data throughput requirements of the correlation module features, to
be built upon the CEP CoherentPaaS engine.
Table 10: Required Data throughputs

Correlation Delay (sec/Event) Throughput (Events/sec)

Consumption 1 30000

Production 1 30000

6.3.2 Data Model

The data model used in the Telco network performance analysis use case is different for
the DBN0 and the DBN1 database layers. The DBN0 database layer will store raw data -
mediated call data records. The DBN1 database layer will store the KQIs and KPIs,
calculated from the CDR data stored in the DBN0 layer.

6.3.2.1 DBN0 Data Model

The DBN0 data store layer is a single flat table that will store call record events from a
telco network. These records are comprised of almost 200 attributes, spanning several
data types, as illustrated in Figure 42. The data types used in DBN0, defined by the oracle
data store, are: timestamp, smallint, number, varchar and integer.

Figure 42: DNB0 table representation, which stores the raw data

CoherentPaaS: Use Cases Design page 74/95

As our initial approach regarding the DBN0 data store used a single flat table in an Oracle
database instance, we decided to test the CoherentPaaS platform with the Derby (DQE)
and the MongoDB data stores

• Distributed File Systems with added layers of functionalities, like Apache Hadoop,
is an option as an underlying technology to handle the DBN0 data store layer. It
allows having data stored in a cluster instead of a single machine leading to
increased robustness. Data stores such as Derby (DQE) can provide these benefits;

• The MongoDB, being a document based data store, was considered as a possible
scenario since the single flat table can be viewed as a document.

6.3.2.2 DBN1 data model

The DBN1 data store layer was first designed to store KPIs and KQIs, calculated from the
raw data available in the DBN0 data stores, using a set of star schemas. This set of star
schemas consists of a base star and spatial and temporal aggregation over the raw data.
Figure 43 shows a representation of the base star.

The star schemas are used in the original deployment of the Altaia system to provide pre-
calculated values for queries from end users, in order to decrease the average wait time
response. Furthermore, it is the Altaia Framework that generates the DBN1 database
tables, from the configuration information, so the star schemas are created automatically.

The star schemas are not mandatory. The DBN1 table creation process can be modified,
depending on the datastore’s requirements, but the performance requirements of the
use case must always be satisfied.

In the DBN1 databases, we can usually find some additional information about the
metrics stored and the required metrics, therefore the data types used are essentially
number and varchar.

CoherentPaaS: Use Cases Design page 75/95

Figure 43: Logical ER diagram for the DBN1 data store layer

Columnar data stores, such as MonetDB or Derby (HBase), are a possibility for the DBN1
data store layer, due to the usage of star schemas, which can lead to better compression,
and the low delay imposed when selecting information but not while inserting. In-
Memory columnar data stores such as ActivePivot will be evaluated, but should take into
account the huge amount of data that is required to store in memory, in order to achieve
a high query hit ratio.

6.3.3 Functional Components

6.3.3.1 Framework

The Framework module is the point where all the KPIs and KQI are produced and
transformed, enabling the user several types of analyses. It reads the data (stored in the
DBN0s and other metrics stored in the DBN1) in batch in well-defined periods of time and
the produced KPIs and KQIs are then stored in batch into the DBN1, where they are
accessible to the Altaia Portal module. During KPIs and KQIs calculation, this module is
also responsible for evaluating pattern deviations through fixed and dynamic thresholds.

Figure 44 shows a simplified architecture of the Framework module, where the focus is
on the components that interact with either DBN0 or DBN1. This includes the DBN0.XML,
the DBN1.XML, the DBN1Loader, the Collector and the Configuration component. The
Filter Manager and the Threshold and Inventory systems do not interact directly with
either database layers.

CoherentPaaS: Use Cases Design page 76/95

DBN1

DBN0

DBN1.XML

DBN0.XML

Threshold
System

Inventory
System

DBN1Loader

Collector

describes

describes

JMS topic
Configuration

FilterManager

Push

Pop

Pop

Change Structure

Get MetaInf

CEP

Figure 44: Altaia Framework summarized architecture

6.3.3.2 Configuration

The Configuration component allows changing the structure of the DBN1 and keeps the
configuration mechanisms used by other components. It maintains the DBN0.XML file,
which maps the types of entities and tables with the ones defined in the inventory, as
well as the DBN1.XML file which is used by the other components to find the star where
the calculated metrics must be stored.

6.3.3.3 Inventory System

This module is responsible for maintaining the system record, i.e. the definition of the
equipment hierarchies and the metric/function’s definitions. This module is instantiated
on each applicational node to grant fault tolerance to the system.

6.3.3.4 Collector

The Collector component is responsible for collecting data from the DBN0 datastores
periodically and, when a new metric is defined in the Inventory, a new collection task is
created. It also calculates the key indicators and pushes them into a JMS topic (a
messaging service).

It is distributed with two distinct techpacks:

• coltechpack-db – the techpack responsible for synchronizing the creation of
metrics in the Inventory module and for collecting data from a DBN0 data store.

CoherentPaaS: Use Cases Design page 77/95

• coltechpack-db-recovery - the techpack responsible for recovering old data that
may appear out of order in a DBN0 data store. It works in strict collaboration with
the coltechpack-db.

DBN1

DBN1.XML

Threshold
System

Inventory
System

DBN1Loader

Agent

JMSCollector topic

CEP

JMSInventory topic

DBN0

DBN0.XML

describes

Techpack

TechpackDB

DbFile

StatsCollector

SendAlarm

describes

Push

Manager

1

1..*
1

1..*

Scheduler

CollectTask

11

1*

Pop

Pop

Pop

Push

JVTResourceInventorySessionExt

ManagerInterface

FilterManagerInterface

AgentInterface

Figure 45: Collector architecture

• We can see in Figure 45 the components that exist in the Collector (in white) and
the external components that they interact with (in blue).

• The Collector has an Agent and several CollectTasks which are used by the Agent
to calculate and push the metrics into the JMS Topic for further processing. The
data required to calculate the metrics are obtained through the TechpackDB
component.

The following list of functions and the sample query (executed by the Collector in DBN0)
are meant to convey the functions and features that are more frequently used by the
Altaia system.

If some of these functions and features are not available in CloudMdSQL or in the data
stores to be deployed, then we will have to implement them at a higher level.

Aggregation analytic functions (Oracle based):

• FIRST_VALUE -> DENSE_RANK () KEEP FIRST
o OVER (PARTITION BY … ORDER BY …)

• RATIO_TO_REPORT
• MEDIAN, PERCENTILE_CONT, PERCENTILE_DISC

CoherentPaaS: Use Cases Design page 78/95

o WITHIN GROUP (ORDER BY …)

Select all events
SELECT
 DATE_START as DATE_START,
 DATE_END as DATE_END,
 YEAR as YEAR,
 MONTH as MONTH,
 WEEK as WEEK,
 DAY as DAY,
 HOUR as HOUR,
 MINUTE as MINUTE,
 ...
 TGT_IRAT_CI_SGSN as TGT_IRAT_CI_SGSN,
 TGT_IRAT_CI_LATITUDE as TGT_IRAT_CI_LATITUDE,
 TGT_IRAT_CI_LONGITUDE as TGT_IRAT_CI_LONGITUDE
FROM v_voz_3g dbn03g
WHERE dbn03g.DATE_END BETWEEN TO_DATE
(${P_DATE_INTERVAL_BEGIN},'YYYYMMDDHH24MI')
AND TO_DATE (${P_DATE_INTERVAL_END},'YYYYMMDDHH24MI')
AND ACCOUNT_NAME = ${P_ACCOUNT_EXPRESSION}
AND SUB_ACCOUNT_ID = ${P_SACCOUNT_EXPRESSION}
UNION ALL
 SELECT
 DATE_START as DATE_START,
 DATE_END as DATE_END,
 YEAR as YEAR,
 MONTH as MONTH,
 WEEK as WEEK,
 DAY as DAY,
 HOUR as HOUR,
 MINUTE as MINUTE,
 ...
 CUR_CI_SGSN as CUR_CI_SGSN,
 CUR_CI_LATITUDE as CUR_CI_LATITUDE,
 CUR_CI_LONGITUDE as CUR_CI_LONGITUDE
FROM v_voz_2g dbn02g
WHERE dbn02g.DATE_END BETWEEN TO_DATE
(${P_DATE_INTERVAL_BEGIN},'YYYYMMDDHH24MI')
AND TO_DATE (${P_DATE_INTERVAL_END},'YYYYMMDDHH24MI')
AND ACCOUNT_NAME = ${P_ACCOUNT_EXPRESSION}
AND SUB_ACCOUNT_ID = ${P_SACCOUNT_EXPRESSION}

CoherentPaaS: Use Cases Design page 79/95

Figure 46: Select all events query decomposition

The above query selects all events that occurred involving 2G or 3G. This query can be
adapted to the CloudMdSQL query language and request data from several data sources.
In our example, we would be querying two data stores - like MongoDB and Derby (DQE)-,
one with the 3G data and the other with the 2G data. Depending on the cost/benefit
tradeoff and the possible cost of implementing non-supported native functions, we might
opt for only one of those data stores.

Other queries are used to get all SMS metadata or all the calls that failed for some reason.
Both these cases only require different selected columns and some changes in the where
clause - since both access the 2G and 3G tables - so the same request to different data
sources can still be performed.

6.3.3.5 DBN1Loader

The DBN1Loader component retrieves the calculated indicators from the JMS topic and,
using the information in the DBN1.XML, stores them into the DBN1.

This component will be modified so that the CoherentPaaS common query engine
(CloudMdSQL) can be supported.

CoherentPaaS: Use Cases Design page 80/95

DBN1

DBN1.XML
DBN1Loader

JMSCollector topic CorrelationDbFile

StatsCollector

SendAlarm

describes

LockController

Pop

read_lock

Figure 47: DBN1Loader's architecture.

Figure 47 describes the components that exist in the DBN1Loader (in white) and the
external components that they interact with (in blue).

This is a single component that collects the calculated metrics from the JMS Topic and
performs several tasks, such as checking for possible alarms to be generated. Then, using
the DBN1.XML that describes the datastore, it stores the indicators in the DBN1.

The following sample query to the DBN1 database performs the composition of the
account information for a whole month with granularity of a day. These queries are
written for an Oracle database instance. Once more, this sample query is meant to
convey the functions and features that are more frequently used by the Altaia system. If
some of these functions and features are not available in CloudMdSQL or in the data
stores to be deployed, then we will have to implement them at a higher level.

Select account (one month aggregated by day)
SELECT *
FROM (SELECT Max(TU.user_account_id),
 SUM(TU.nusers),
 …
 FROM (SELECT Count(1), user_account_idCount, …
 FROM da_trf_cuser
 WHERE EXISTS (SELECT …)
 GROUP BY user_account_id, user_saccount_id),
 (SELECT Round(Decode(SUM(call_established_qty), …))
 FROM vagg_dd_f_trf_account_ag1 f
 WHERE report_date_time BETWEEN
 To_date ('201402010000', 'YYYYMMDDHH24MI') AND
 To_date ('201402282359', 'YYYYMMDDHH24MI') AND EXISTS (…)))

A

B

CoherentPaaS: Use Cases Design page 81/95

Figure 48: Select account query decomposition

The previous query (simplified for analysis purposes), selects some data related to client
accounts, aggregated by day. When adapting this query to use the CloudMdSQL query
language, we will use sub queries A and B to different data stores. In this case, the data
store queried by the subquery A would store the user’s data and the data store queried
by the subquery B would store some pre aggregated account data. Once again, and
depending on the cost/benefit trade-off and the possible cost of implementing non-
supported native functions, we might opt for only one of those data stores.

Other queries can be built for:

• Different data, like the MSISDN instead of the account;
• Different aggregation parameters, like only 4 days of data aggregated by day or 4

hours of data aggregated by 5 minutes.

These queries would also be easily adapted to request data from multiple data sources, as
they follow the same semantic and syntactical construction.

6.3.3.6 Correlation

The Correlation module uses data from two different data sources, as illustrated in Figure
41: the Mediation module and the data stores in the DBN0 layer.

The Mediation module receives the data from various heterogeneous sources, such as
routes and servers and this data is collected using many different protocols, such as
SNMP or FTP. It can also be enriched in the Mediation module before processing.

The data stores in the DBN0 layer will be used as a data source for the Correlation. This
allows the reuse of correlated data with new data from Mediation, in order to perform
operations such as call assembly.

The implemented Correlation module will provide additional features – namely call drop
detection, call collision detection and real-time KPI threshold violation monitoring -,
replacing parts of the alarm logic of Framework, and thus enabling the alarms to be fired
earlier. The alarm events are then delivered to the DBN1Loader, which will process them.

CoherentPaaS: Use Cases Design page 82/95

The Correlation module will be built upon CoherentPaaS CEP system.

6.3.3.7 Portal

Regarding the Portal, which enables data querying on DBN1 and DBN0 data stores, it will
be composed of a set of typical queries that will be executed to obtain the data.

The executed queries are generated by the Altaia Portal, depending on the options set by
the user. To circumvent modifications at the Portal level we will simulate the Portal by
directly injecting the most frequent types of queries into the data stores.

The queries executed to the DBN1 data stores will have the following characteristics:

• The data retrieved will be sparse when compared to the total amount of data
stored.

• There will be aggregation operators, such as:
o Sums/Count [distinct];
o Averages/Median;
o Max/Min.
o First/Last
o Percentile(cont/disc)

• Ordering of data and filtering by time range.

When executing queries to the DBN0 (in a drill-to-detail context) the queries will have
similar characteristics. However, they can also contain sub-queries and joins.

The queries for both layers include operators such as +, -, /, *, if, > , >=, ,<,<=, =, <>, and,
or, not, is null, like and between. The aggregations might use functions such as:

• FIRST_VALUE -> DENSE_RANK () KEEP FIRST
o OVER (PARTITION BY … ORDER BY …)

• RATIO_TO_REPORT
• MEDIAN, PERCENTILE_CONT, PERCENTILE_DISC

o WITHIN GROUP (ORDER BY …)

Once again, if some of these functions and features are not available in CloudMdSQL or in
the data stores to be deployed, then we will have to implement them at a higher level.

6.4 Telco Network Performance Analysis: Expected
Benefits

Most of the expected benefits will emerge from the transparent usage of better adapted
data stores for the big data scenario that this use case will have to face. Previous
experiments using Impala over Hadoop showed some improvements regarding the use
case requirements. Hence, we expect that using CoherentPaaS we will be able to use the
best suited data store for the data being stored, while maintaining the Altaia system
relatively untouched.

Data stores and associated expected benefits are ranked below in respect to their
importance in the use case:

• Distributed File Systems and Document Stores: As our initial approach regarding
the DBN0 data store used a single flat table in an Oracle database instance, we

CoherentPaaS: Use Cases Design page 83/95

decided to test the CoherentPaaS platform with the Derby (DQE) and the
MongoDB data stores

 Distributed File Systems with added layers of functionalities, like Apache
Hadoop, is an option as an underlying technology to handle the DBN0 data
store layer. It allows having data stored in a cluster instead of a single
machine leading to increased robustness. Data stores such as Derby (DQE)
can provide these benefits

 The MongoDB, being a document based data store, was considered as a
possible scenario since the single flat table can be viewed as a document.
The flexibility through CPaaS to change a data store with another data
store is also among the expected benefits.

• Columnar data stores, such as MonetDB or Derby (DQE) - HBase based-, are a
possibility for the DBN1 data store layer, due to the usage of star schemas, which
can lead to better compression, and the low delay imposed when selecting
information but not while inserting. In-Memory columnar data stores such as
ActivePivot will be evaluated but should be take into account the huge amount of
data that was required to store in memory, in order to achieve a high query hit
ration;

• Key-Value data stores, such as Eutropia, are well designed for the drill-to-detail
queries to the DBN0 data store layer due to its specific data access pattern, i.e.
getting single values using a key. We won’t use them, however, because that
would require having the data replicated, meaning terabytes of additional space.

• Through the usage of the CoherentPaaS CEP system, we might expect to reduce
framework processing (alarming) and anticipate real-time alarms, while benefiting
from the ease of usage provided by its SQL-like language and associated database
operators.

6.5 Telco Network Performance Analysis: Common
CPaaS Components

No specific components have been identified to meet the proposed criteria for Common
CPaaS Components. However, the union operation which is described in Section 4.5 is
also used in this use case, as illustrated in Figure 46.

CoherentPaaS: Use Cases Design page 84/95

7 BIBLIOGRAPHIC SEARCH USE CASE

7.1 Bibliographic Search: Use Case Overview
Bibliographic databases collect the researchers’ knowledge and are important resources
to find experts and institutions working in specific research areas. One of these
bibliographic databases is DBLP, which contains all papers about computer science;
CORDIS which contains all European projects; or SCOPUS, which is one of the biggest
bibliographic databases.

Mainly, bibliographic databases are used by researchers to know the state of the art of a
given topic. However, they can be used for many other purposes such as looking for
reviewers, collaboration, similar papers or works and so on.

Sparsity technologies and INRIA want to go one step forward with Sciencea, a
bibliographic web application, trying to merge the contents of CORDIS and DBLP to offer
new analytical queries such as: which are the projects probably related with a given
article or who is a good reviewer for a given European project.

These are the main functionalities provided by the use case:

• Calculate the best reviewers for a given European project.
• Calculate the most related European projects for a given article.
• The system must allow adding new reviewers (without documents) with a set of

keywords to define their specialization.
• Load projects and papers periodically

7.2 Bibliographic Search: Architecture Level

7.2.1 Architecture overview

The architecture is the same as the one for the Media Planning use case, because despite
having a different domain, the application workflow is the same and therefore, we will
use a Lambda Architecture.

The application runs with a data-store that is immutable because it does not have delete
or update operations, allowing only create and read data. It works in real time and
calculates query results on top of an incoming stream of data. Results, once computed,
should be stored in such a manner that they can be queried by applications.

The main software components involved in the loading process are Trident and Storm
because these offer a framework to have a scalable loading architecture with real time
queries over the processed data.

Storm is a streaming library that handles transport, messaging and process supervision.
Storm has two main components for a given dataflow (topology): spouts, which are input
channels of data; and bolts, which processes information. Trident is a component that
works on top of Storm with a similar API to Pig / Cascading to apply real time queries that
merges the current input data with the existent information in the datastores (DBs or
Memcached). Trident is especially useful to design stateful analytical processes.

CoherentPaaS: Use Cases Design page 85/95

The following snippet shows an example of the word count algorithm using Trident.
Trident contains a set of useful methods, such as each or groupBy, to design easily a
topology. In the following example, for each document, the system groups them by words
and then computes the total of them using incremental techniques. So, any application is
able to report in real time the number of documents without recounting the previous
ones every time.

Figure 49: An example of the word count algorithm using Trident

7.2.2 Deduplications

The loading process of the bibliographic use case is very complex because there are a lot
of entities that needs to be deduplicated. These entities are projects, institutions, cities,
countries and regions. Furthermore, other entities need to be indexed and scored by
terms/keywords that appear in the projects description.

The deduplication process of any entity type implies a common set of processes:

• Normalization: To improve the matching probability.
• Block providers: To produce disjoint blocks by different approaches and compare

just those registers that appear in the same block. Notice that this algorithm
avoids a quadratic evaluation of the registers.

• Comparison method: Usually, approximate comparisons are performed. E.g.
Levenshtein distance.

• Emit the unique registers: The system must implement a valid merge approach of
those registers that represent the same entity. The result of all unique registers is
produced by this component.

The following subsection shows an example of deduplication process designed with Storm
and Trident.

7.2.2.1 Example: Institutions deduplication

The process for deduplicating CORDIS institutions starts when a new set of projects
appears. Then, for every project, the system extracts the following fields to filter and
group the input data: project identifier (docId), institution name, initials and, acronym.
The rest of the related information for a given institution can be consumed as a complex
object later. This task will be performed by a Storm bolt called InstitutionFieldExtractor.

The second step of the process consists of the creation of the block providers by a Trident
group-by operators. The system groups registers by initials and acronyms and it proceeds
to append the existing data of the database in the previously created groups by initials
and acronyms. This storm process is easily configured with a trident stateQuery whose
output includes a new field called blockId to identify the block where a given register
belongs to.

CoherentPaaS: Use Cases Design page 86/95

Once all groups (blocks of registers) are created, the system unifies all of them in a single
set because one register belongs to a single block. This process is performed by means of
the SharedBlocksQuery component. The next process identifies those registers that really
represent the same entity with the comparison method. This part is processed by a
component called ResolveInstitutionsId which additionally will insert the new institutions
in the database and sends to the next process the identifiers of all processed institutions
(referenced as institutionId), its name and the project identifier where they appear.

The produced output is used to resolve the relationships among projects and institutions
before adding a new European project to the database.

Figure 50: Relationships among Projects and Institutions

7.2.3 Documents indexation

Documents (European projects and papers) need to be quickly retrieved by any of the
relevant words included in its description/abstract. Also, other entities (such as
programmes, calls and categories) need to be indexed by all words that appear in the
projects (e.g. to know the word relevance of all projects of a given call).

Documents indexation is performed with Trident and Storm and this section shows the
detail of the involved components in this process.

Firstly, for each document, the description (abstract) is splitted by words by the
component SplitByWord. For each document, the output is a set of pairs - word and
document. Then, this output is grouped by just words to compute the global relevance of
a word in the database (IDF – Inverse Document Frequency). Also, the output produced by
the SplitByWord component is grouped by the pairs of word and document to compute
the local relevance of a given word for one document (TF – Term frequency).

The IDF and TF calculus are aggregates that can be stored in the database updating the
existing values. It is easily performed using the Trident persistent aggregates.

Figure 51: Documents indexation

CoherentPaaS: Use Cases Design page 87/95

The rest of indexed entities are not used explicitly by the provided functionality of this
use case. However, it could be implemented changing the TF part, grouping them by its
values instead of by document.

7.2.4 Scoring

Authors and institutions need to be scored by the words that appear in the document. So,
new documents and keywords are grouped by authors, and taking into account the
existing documents of the same author, the system computes the score function which
evaluates the relevance of an author for a given word.

Figure 52: Scoring

7.3 Bibliographic Search: Design Level

This section describes the conceptual schema of this use case. The conceptual schema is
the required information to build an information system. It has two parts: the structural
schema (i.e. data model), which describes the information that need to be stored; and the
behavioral schema (i.e. functional components), which describes the events/use cases
that the system is able to solve.

7.3.1 Data Model

The data model of the bibliographic use case has two conceptual units: the CORDIS part,
which stores all the related information about European projects; and the academic part,
which stores information about published papers (e.g. from DBLP).

7.3.1.1 CORDIS data model

CORDIS stores information about European projects, which can be classified by a given
category or by a call program. A European project has different participants, and one of
them is the coordinator and usually, participants are companies or research institutions
(e.g. universities).

For this use case, the system needs to know who is expert about a set of keywords. This
expertise does not appear explicitly in the raw data and it is inferred and stored for
performance issues. Therefore, the project description is tokenized and the relevance of a
word for a given project is stored in a relationship called APPEARS. The relevance of an
institution for a given keyword is inferred using the APPEARS relationship and stored in
SCORES relationships.

CoherentPaaS: Use Cases Design page 88/95

The current version of the system needs evaluates the expertise of the most expert
coordinators separately from the rest of participants and thus, we have a specific SCORE
relationship for each role.

The following diagram represents the described concepts:

Figure 53: CORDIS Data Model

To persist the data related to these concepts we suggest using different datastores to
reduce the number of I/O operations, as listed below and ranked according to their
importance in the use case.

• Documental: To persist all data which could have a flexible size (e.g. text).

 Project (id, description)

• Graph: To persist all relationships used for filtering purposes (e.g. to improve
future updates efficiently avoiding scans and multiple queries).

 PARTICIPATES, APPEARS.

• Key Value: To persist list of complex items (more than one basic field) related with
a given key that need to be analyzed in the same time during the query.

 SCORES: token as a key and Institution with is weight as a value.

 INDEXES: project id as a key and value the 3 most relevant word of a
project.

• RDBMS: To persist all basic data required to return as part of the projection of a
given query.

 Project (id, acronym, title, startdate, enddate, cost, funding,
programmeAcronym, url, coordinatorCountry, year, cooperative,
lastUpdate)

 Institution (code, name, contactInformation, country, region, city, url,
address)

 COORDINATES (projectId, institutionId).

 PARTICIPATES (projectId, participantId).

CoherentPaaS: Use Cases Design page 89/95

7.3.1.2 Academic data model

In the current version of Sciencea, the CORDIS information is integrated with an academic
database by means of the common keywords. However, they manage different
conceptual parts. Specifically, the academic database manages documents, its authors
and these authors belong to a set of institutions. Moreover, documents can make
references to another document to justify their contribution.

For this conceptual part, the system also needs to store who is expert on a given topic
and therefore, the SCORE relationship also appears between term and person.

Figure 54: Academic data model

To persist the data related to these concepts we suggest using different datastores to
reduce the number of I/O operations, as listed below and ranked according to their
importance in the use case.

• Documental: To persist all data which could have a flexible size (e.g. text).

 Document (id, description)

• Graph: To persist all relationships used for filtering purposes (e.g. to improve
future updates efficiently avoiding scans and multiple queries).

 WORKS, WRITES.

• Key Value: To persist list of complex items (more than one basic field) related with
a given key that need to be analyzed in the same time during the query.

 SCORES: term as a key and Person with is weight as a value.

 APPEARS (prev. referenced in the documentation as RELEVANT_WORDS):
document.id as a key and the set its words sorted by weight as a value.

• RDBMS: To persist all basic data required to return as part of the projection of a
given query.

 Document (id, title, state, date, url, pages, firstPage, lastPage, isbn,
number, volume, booktitle, publisher, ee, updateDate, school, editor,
address, cite, chapter, docType)

 Person (code, name, contactInformation, country, language)

 LAST_PAPER (docId, personCode). //INFERRED

 LAST_AFFILIATION (personCode, InstitutionName). //INFERRED

CoherentPaaS: Use Cases Design page 90/95

The REFERENCES relationship is not used from the selected queries of the bibliographic
use case, but it is currently used by other Sciencea queries. Therefore, it could be omitted
from a practical point of view until the use case will be extended to cover all Sciencea
queries.

7.3.2 Functional Components

The main functionalities provided by this use case are:

• Calculate the best reviewers for a given European project.
• Calculate the most related European projects with a given article.
• The system must allow adding new reviewers (without documents) with a set of

keywords to define their specialization.
• Load projects and papers periodically.

All functionalities use different datastores simultaneously. So, having CloudMdsQL
simplifies the code of integrating result sets of different datastores. The following
subsections describe the formal definition of each functionality and the involved part of
the schema of each datastore.

7.3.2.1 Calculate the best reviewers for a given European project (QUERY).

Definition: The goal of this query is to return the 10 most scored people in the project
expertise area with have not been working in any of the participant institutions. The
result must be sorted by the score. For each person, the system shows:

• His / Her current affiliation.
• His / Her last paper.
• His / Her basic fields: code, name, contact information and number of

publications.

Queries types:

• SCORES (key value),
• WRITES, WORKS, PARTICIPATES (graph)
• Person, LAST_PAPER, LAST_AFFILIATION and Document (RDBMS and

documental).

The execution plan of this query should compute the same result as the following one.

CoherentPaaS: Use Cases Design page 91/95

Figure 55: The best reviewers for a given project query decomposition

7.3.2.2 Calculate the most related European projects with a given article (QUERY).

Definition: This query returns the active European projects in a given paper publication
date, which share some participants with the affiliations of a given paper and share some
of the 3 more relevant words of the paper. For each European project, the system
returns:

• The project basic information.
• The most relevant keywords of the project
• The project coordinator and the other participants.

Queries types:

INDEXES (key value), Definition: This query returns the active European projects in a given
paper publication date, which share some participants with the affiliations of a given
paper and share some of the 3 more relevant words of the paper. For each European
project, the system returns:

• The project basic information.
• The most relevant keywords of the project
• The project coordinator and the other participants.

Queries types:

CoherentPaaS: Use Cases Design page 92/95

• RELEVANT_WORDS, INDEXES (key value),
• WRITES, WORKS relationships (graph).
• Project (RDBMS and documental).

Figure 56: The most related European projects with a given article query decomposition

7.3.2.3 Add new reviewers (UPDATE)

Definition: This operation adds a new person with all the institutions where he/she
previously has worked and a set of expertise areas (keywords).

Queries types:

• Person, Institution (RDBMS),
• SCORES and WORKS (graph).

7.3.2.4 Loading process (UPDATE)

The loading process consists of performing the insertions of new papers or EU projects in
all datastores. Specifically, it implies lots of deduplications and indexation procedures to
assure fast queries over the data.

Specifically, for the European projects loading process, the system needs to deduplicate
projects, cities, countries and regions; load the raw data and index projects, institutions
and other entity types around the project by keyword. All datastores are affected by this
process through the CloudMdsQL.

The loading process of the pure bibliographic part is exactly the same excluding the
deduplication process.

CoherentPaaS: Use Cases Design page 93/95

Figure 57: Bibliographic part Loading Process

7.4 Bibliographic Search: Expected Benefits

Nowadays, UPC has an existing system called Sciencea with similar queries that is
completely build just using a graph database.

However, the current design is not scalable and has no transactions. Also, we expect
having different datastores with more appropriate structures for each scenario increase
the performance of the number of queries per second. Also, a key component is the
Holistic Transaction Management which allows to manage the consistency among
different datastores and also must ensure the quantitative requirements explained in the
document D9.1, which are the following ones:

Requir
ement

s
Name Brief Description

Acceptable

metric

Target

metric

Req.01 MAXIMUM_TIME
The system must be able to
solve all analytical queries

in less than 1 minute

1 min 2sec

Moreover, having CloudMdsQL simplifies the development because this component
integrates inputs and outputs of different datastores using a common syntax. Otherwise,
we would need to write a lot of code to parse and sent data from different datastores in
each functionality.

CoherentPaaS: Use Cases Design page 94/95

7.5 Bibliographic Search: Common CPaaS
Components

We have identified a set of components that can be shared across different use cases
with a similar architecture:

• Trident-CloudMdsQL: Trident provides a way to design transactional analytical
processes with Storm to compute aggregates (scores). It is a very common
practice to create trident plugins to make persistent queries and aggregates inside
a trident topology for a specific data store. Probably this component could be
really shared between most of use cases.

• Storm components: Storm has a set of different components types: bolts, spouts
and aggregators. The document indexation process needs many storm
components that are hard to code and could be shared and reused at least
between this use case and the social media use case. Probably, we’ll realize that
other Storm components from other use cases can be shared.

• Xwork-cloudMdsQL: XWork has a pluggable architecture and then interceptors,
actions and results can be shared across different use cases. We suggest creating
and sharing an Xwork-cloudMdsQL plugin to inject the query engine into the
actions and to manage the transaction workflow before executing an action. The
social media use case also will use the Xwork framework and thus, it can be
reused.

CoherentPaaS: Use Cases Design page 95/95

8 FUTURE WORK
Ongoing work in the use cases is entering into pre-implementation and implementation
tasks. The aim is to achieve the following during the next 12-month period:

- Data store tests: results from tests, made within each use case, upon different
participating components (data stores). This is necessary to validate adequacy of
native functionalities (not implemented on CloudMdsQL), validate performance
options on varying loads through experiments, as well as to measure performance
in native scenarios

- Implementation Approach: definition of techniques that will be chosen and
applied to different problems with the use of the CoherentPaaS programming
model

- Implementation of queries: first CoherentPaaS query implementations

	Table of Contents
	1 Executive Summary
	1.1 Overview of use-cases
	1.2 Challenges for CPaaS
	1.3 Common CPaaS Components across use-cases
	1.4 Expected Benefits
	1.5 Overview of dependencies

	2 Notation: QUERY PLAN SYMBOLS
	3 Cloud Telecom/M2M Use Case – CDR analytics
	3.1 CDR Analytics: Use Case Overview
	3.2 CDR Analytics: Architecture Level
	3.3 CDR Analytics: Design Level
	3.3.1 Requirements Context in numbers
	3.3.2 Data Model
	3.3.3 Functional Components
	3.3.3.1 Basic Tariff Simulation Functionality
	3.3.3.1.1 Best Scenario for one number
	3.3.3.1.2 Best Scenarios for a Customer / a Group of numbers / a network of numbers
	3.3.3.1.3 Target scenario for a number
	3.3.3.1.4 Target scenario for a customer / a Group of numbers / a network of numbers

	3.3.3.2 Interactive Customer analysis
	3.3.3.3 What-if functions on revenue impact
	3.3.3.3.1 Modify a Scenario – How it affects my revenue?
	3.3.3.3.2 Scenario Substitution in a Group of Customers– How it affects my revenue?

	3.3.3.4 Aggregate Functions
	3.3.3.4.1 Customer distance from best scenario
	3.3.3.4.2 Customer distance from a given scenario
	3.3.3.4.3 Invoices distance from best per scenario

	3.3.3.5 Social-network related functions
	3.3.3.5.1 Key Customer Finding and Proposal Adjustment
	3.3.3.5.2 Moving calls on-net

	3.4 CDR Analytics: Expected Benefits
	3.5 CDR Analytics: Common CPaaS Components

	4 Cloud Telecom/M2M Use Case – Machine-To-Machine
	4.1 Μ2Μ: Use Case Overview
	4.2 M2M: Architecture Level
	4.2.1 Data Collection Architecture
	4.2.2 Storm Topology
	4.2.3 Data Expiration

	4.3 M2M: Design Level
	4.3.1 Requirements Context in numbers
	4.3.2 Data Model
	4.3.2.1 Generic Data Model
	4.3.2.2 Master Dataset
	4.3.2.3 Reference Data
	4.3.2.4 Data Views – Speed Layer and Analytical Layer Views
	4.3.2.4.1 Views over time
	4.3.2.4.2 State Views
	4.3.2.4.3 Trip Views
	4.3.2.4.4 Alarm Views

	4.3.2.5 Data Stores to use

	4.3.3 Overall Architecture – CoherentPaaS role
	4.3.4 Functional Components
	4.3.4.1 Dashboard
	4.3.4.1.1 View progress of metrics in past interval or now
	4.3.4.1.2 View statistics
	4.3.4.1.3 Alarms given – past and real-time

	4.3.4.2 Trip Queries
	4.3.4.2.1 Current Trip Information
	4.3.4.2.2 Trip Statistics

	4.3.4.3 Positions Map
	4.3.4.3.1 List of Positions – Past and real-time
	4.3.4.3.2 POIs
	4.3.4.3.3 Geofencing event

	4.3.4.4 Activity Diagram
	4.3.4.4.1 Engine status time diagram – past and real-time
	4.3.4.4.2 Find drivers with seat-belt off – past and real-time

	4.4 M2M: Expected Benefits
	4.5 M2M: Common CPaaS Components

	5 Media Planning Use Case
	5.1 Media Planning: Use Case Overview
	5.2 Media Planning: Architecture Level
	5.3 Media Planning: Design Level
	5.3.1 Data Model
	5.3.2 Functional Components
	5.3.2.1 Who are the most influencers? (QUERY)
	5.3.2.2 Which are the communities around a set of keywords? (QUERY)
	5.3.2.3 Adding new documents (UPDATE)

	5.4 Media Planning: Expected Benefits
	5.5 Media Planning: Common CPaaS Components

	6 Real-Time Network Performance Analysis in a Telco Environment Use Case
	6.1 Telco Network Performance Analysis: Use Case Overview
	6.2 Telco Network Performance Analysis: Architecture Level
	6.3 Telco Network Performance Analysis: Design Level
	6.3.1 Requirements Contextualization
	6.3.2 Data Model
	6.3.2.1 DBN0 Data Model
	6.3.2.2 DBN1 data model

	6.3.3 Functional Components
	6.3.3.1 Framework
	6.3.3.2 Configuration
	6.3.3.3 Inventory System
	6.3.3.4 Collector
	6.3.3.5 DBN1Loader
	6.3.3.6 Correlation
	6.3.3.7 Portal

	6.4 Telco Network Performance Analysis: Expected Benefits
	6.5 Telco Network Performance Analysis: Common CPaaS Components

	7 Bibliographic Search Use Case
	7.1 Bibliographic Search: Use Case Overview
	7.2 Bibliographic Search: Architecture Level
	7.2.1 Architecture overview
	7.2.2 Deduplications
	7.2.2.1 Example: Institutions deduplication

	7.2.3 Documents indexation
	7.2.4 Scoring

	7.3 Bibliographic Search: Design Level
	7.3.1 Data Model
	7.3.1.1 CORDIS data model
	7.3.1.2 Academic data model

	7.3.2 Functional Components
	7.3.2.1 Calculate the best reviewers for a given European project (QUERY).
	7.3.2.2 Calculate the most related European projects with a given article (QUERY).
	7.3.2.3 Add new reviewers (UPDATE)
	7.3.2.4 Loading process (UPDATE)

	7.4 Bibliographic Search: Expected Benefits
	7.5 Bibliographic Search: Common CPaaS Components

	8 Future Work

